Publications by authors named "Yaojian Li"

Co-incineration of medical waste (MW) in municipal solid waste incinerators (MSWIs) is a crucial disposal method for emergency disposal of MW and the management of MW in small and medium-sized towns. This study aims to analyze and compare the levels and distribution patterns of chlorine/brominated dioxins and their precursors in fly ash from MSWIs and medical waste incinerators (MWIs) while also focusing on identifying the new pollution concerns that may arise from the co-incineration of municipal solid waste (MSW) mixed with MW (MSW/MW). The concentration of chlorobenzene (CBzs), polychlorinated biphenyls (PCBs) and polychlorinated dibenzo-p-dioxins/dibenzofurans (PCDD/Fs) in fly ash from co-incineration of MSW/MW are 887.

View Article and Find Full Text PDF
Article Synopsis
  • Fly ash from burning trash is dangerous because it contains harmful metals and pollutants that can hurt the environment.
  • Researchers studied a special method called thermal plasma vitrification, which changes fly ash into a safer form, and compared it with other treatment methods.
  • They found that using plasma technology can greatly reduce environmental damage, especially when using clean energy, and it’s a better option for dealing with fly ash than other methods.
View Article and Find Full Text PDF

With its enormous social and economical development, China is now experiencing a rapid increase in solid wastes generation and growing pressure for solid wastes management. Today solid wastes in China are mainly managed by a combination of landfill, incineration, and composting. Within different possible treatment routes, thermal plasma technology (TPT) offers the advantages of efficiently gasifying the organic contents of solid wastes into syngas that can be used for heat and power generation, and vitrifying the inorganics simultaneously into glassy slag with very low leachabilities.

View Article and Find Full Text PDF

Tetrabromobisphenol A (TBBPA), a currently intensively used brominated flame retardant (BFR), is employed primarily as a reactive flame retardant in printed circuit boards but also has additive applications in several types of polymers. TBBPA is a ubiquitous environmental contaminant that is observed in both abiotic and biotic matrices. This paper summarizes and critically reviews the published scientific data concerning the current pollution status of TBBPA in China.

View Article and Find Full Text PDF