With extensive first-principles density-functional calculations, we construct a three-dimensional compositional phase diagram of BaCaZrTiO (BCZT) with the Ca and Zr content in the ranges of 0 ≤ x ≤ 0.2 and 0 ≤ y ≤ 1. Our calculations show that, when the Zr content increases, the difference in energy and difference in the structural parameters of the cubic, tetragonal, orthorhombic, and rhombohedral phases of BCZT are reduced.
View Article and Find Full Text PDFThere is a long standing contradiction on the tensile response of zinc oxide nanowires between theoretical prediction and experimental observations. Although it is proposed that there is a ductile behavior dominated by phase transformation, only an elastic deformation and brittle fracture was witnessed in experiments. Using molecular dynamics simulations, we clarified that, as the lateral dimension of zinc oxide nanowires increases to a critical value, an unambiguous ductile-to-brittle transition occurs.
View Article and Find Full Text PDFUtilizing a combination of ab initio density-functional theory and thermodynamics formalism, we have established the microscopic mechanisms for oxidation of the binary and ternary alloy surfaces and provided a clear explanation for the experimental results of the oxidation. We construct three-dimensional surface phase diagrams (SPDs) for oxygen adsorption on three different Nb-X(110) (X = Ti, Al or Si) binary alloy surfaces. On the basis of the obtained SPDs, we conclude a general microscopic mechanism for the thermodynamic oxidation, that is, under O-rich conditions, a uniform single-phase SPD (type I) and a nonuniform double-phase SPD (type II) correspond to the sustained complete selective oxidation and the non-sustained partial selective oxidation by adding the X element, respectively.
View Article and Find Full Text PDFThe heating of a gold thin film by a single 10 fs laser pulse is modeled by a combined continuum-atomistic method considering the electron relaxation effect. Numerical results show that the temperature evolution and stress propagation proceed in the same manners as those for the subpicosecond laser irradiation. It is also found that the electron relaxation effect is insignificant and could be considerably overestimated by neglecting the ballistic energy transfer in the film.
View Article and Find Full Text PDFThe tensile behaviours of [111]-oriented SiC nanowires with various microstructures are investigated by using molecular dynamics simulations. The results revealed the influence of microstructures on the brittleness and plasticity of SiC nanowires. Plastic deformation is mainly induced by the anti-parallel sliding of 3C grains along an intergranular amorphous film parallel to the plane and inclined at an angle of 19.
View Article and Find Full Text PDFThe crackling noise due to scratching superhard nanocomposite coatings was investigated by using a simple stick-slip model. The optimum information extracted from statistical analysis, in terms of the Akaike information criterion, is in good agreement with real tests. As a nanocomposite coating approaches an optimal performance, the acoustic emission energy follows a power-law distribution and its behavior is likely to be independent of microscopic and macroscopic details.
View Article and Find Full Text PDF