Human activity recognition is important in the study of personal health, wellness and lifestyle. In order to acquire human activity information from the personal space, many wearable multi-sensor devices have been developed. In this paper, a novel technique for automatic activity recognition based on multi-sensor data is presented.
View Article and Find Full Text PDFRecently, wearable computers have become new members in the family of mobile electronic devices, adding new functions to those provided by smart-phones and tablets. As "always-on" miniature computers in the personal space, they will play increasing roles in the field of healthcare. In this work, we present our development of eButton, a wearable computer designed as a personalized, attractive, and convenient chest pin in a circular shape.
View Article and Find Full Text PDFObjective: Accurate estimation of food portion size is of paramount importance in dietary studies. We have developed a small, chest-worn electronic device called eButton which automatically takes pictures of consumed foods for objective dietary assessment. From the acquired pictures, the food portion size can be calculated semi-automatically with the help of computer software.
View Article and Find Full Text PDFDietary assessment is important in health maintenance and intervention in many chronic conditions, such as obesity, diabetes, and cardiovascular disease. However, there is currently a lack of convenient methods for measuring the volume of food (portion size) in real-life settings. We present a computational method to estimate food volume from a single photographical image of food contained in a typical dining plate.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
July 2013
A novel method to estimate the 3D location of a circular feature from a 2D image is presented and applied to the problem of objective dietary assessment from images taken by a wearable device. Instead of using a common reference (e.g.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
August 2013
Food portion size measurement combined with a database of calories and nutrients is important in the study of metabolic disorders such as obesity and diabetes. In this work, we present a convenient and accurate approach to the calculation of food volume by measuring several dimensions using a single 2-D image as the input. This approach does not require the conventional checkerboard based camera calibration since it is burdensome in practice.
View Article and Find Full Text PDFMeasuring food volume (portion size) is a critical component in both clinical and research dietary studies. With the wide availability of cell phones and other camera-ready mobile devices, food pictures can be taken, stored or transmitted easily to form an image based dietary record. Although this record enables a more accurate dietary recall, a digital image of food usually cannot be used to estimate portion size directly due to the lack of information about the scale and orientation of the food within the image.
View Article and Find Full Text PDFProc IEEE Annu Northeast Bioeng Conf
January 2012
A wearable computer, called eButton, has been developed for evaluation of the human lifestyle. This ARM-based device acquires multimodal data from a camera module, a motion sensor, an orientation sensor, a light sensor and a GPS receiver. Its performance has been tested both in our laboratory and by human subjects in free-living conditions.
View Article and Find Full Text PDF