Trace organic contaminants (TrOCs) are omnipresent in wastewater treatment plants (WWTPs), yet, their removal during wastewater treatment is oftentimes incomplete and underlying biotransformation mechanisms are not fully understood. In this study, we elucidate how different factors, including pre-exposure levels and duration, influence microbial adaptation towards catabolic TrOC biodegradation and its potential role in biological wastewater treatment. Four sequencing batch reactors (SBRs) were operated in parallel in three succeeding phases, adding and removing a selection of 26 TrOCs at different concentration levels.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
July 2024
Per- and polyfluoroalkyl substances (PFAS), particularly the perfluorinated ones, are recalcitrant to biodegradation. By integrating an enrichment culture of reductive defluorination with biocompatible electrodes for the electrochemical process, a deeper defluorination of a C-perfluorinated unsaturated PFAS was achieved compared to the biological or electrochemical system alone. Two synergies in the bioelectrochemical system were identified: i) The in-series microbial-electrochemical defluorination and ii) the electrochemically enabled microbial defluorination of intermediates.
View Article and Find Full Text PDFEnzymatic cleavage of C─F bonds in per- and polyfluoroalkyl substances (PFAS) is largely unknown but avidly sought to promote systems biology for PFAS bioremediation. Here, we report the reductive defluorination of α, β-unsaturated per- and polyfluorocarboxylic acids by spp. The microbial defluorination products were structurally confirmed and showed regiospecificity and stereospecificity, consistent with their formation by enzymatic reactions.
View Article and Find Full Text PDFOrganic contaminants enter aquatic ecosystems from various sources, including wastewater treatment plant effluent. Freshwater biofilms play a major role in the removal of organic contaminants from receiving water bodies, but knowledge of the molecular mechanisms driving contaminant biotransformations in complex stream biofilm (periphyton) communities remains limited. Previously, we demonstrated that biofilms in experimental flume systems grown at higher ratios of treated wastewater (WW) to stream water displayed an increased biotransformation potential for a number of organic contaminants.
View Article and Find Full Text PDFChlorinated polyfluorocarboxylic acids (Cl-PFCAs) derived from the widely used chlorotrifluoroethylene (CTFE) polymers and oligomers may enter and influence the aquatic environment. Here, we report significant defluorination of Cl-PFCAs by an anaerobic microbial community via novel pathways triggered by anaerobic microbial dechlorination. Cl-PFCAs first underwent microbial reductive, hydrolytic, and eliminative dechlorination, and it was the hydrolytic dechlorination that led to significant spontaneous defluorination.
View Article and Find Full Text PDFEnzymatic cleavage of C-F bonds in per- and polyfluoroalkyl substances (PFAS) is largely unknown but avidly sought to promote systems biology for PFAS bioremediation. Here, we report the reductive defluorination of α, β-unsaturated per- and polyfluorocarboxylic acids by spp. Two critical molecular features in species enabling reductive defluorination are (i) a functional fluoride efflux transporter (CrcB) and (ii) an electron-bifurcating caffeate reduction pathway (CarABCDE).
View Article and Find Full Text PDFGraphitic carbon nitride (g-CN) nanomaterials hold great promise in diverse applications; however, their stability in engineering systems and transformation in nature are largely underexplored. We evaluated the stability, aging, and environmental impact of g-CN nanosheets under the attack of free chlorine and reactive chlorine species (RCS), a widely used oxidant/disinfectant and a class of ubiquitous radical species, respectively. g-CN nanosheets were slowly oxidized by free chlorine even at a high concentration of 200-1200 mg L, but they decomposed rapidly when ClO· and/or Cl were the key oxidants.
View Article and Find Full Text PDFBenzimidazole fungicides are frequently detected in aquatic environments and pose a serious health risk. Here, we investigated the metabolic capacity of the recently discovered complete ammonia-oxidizing (comammox) Nitrospira inopinata and kreftii to transform a representative set of benzimidazole fungicides (i.e.
View Article and Find Full Text PDFThe recently discovered microbial reductive defluorination of two C branched and unsaturated fluorinated carboxylic acids (FCAs) provided valuable insights into the environmental fate of per- and polyfluoroalkyl substances (PFASs) and potential bioremediation strategies. However, a systematic investigation is needed to further demonstrate the role of C═C double bonds in the biodegradability of unsaturated PFASs. Here, we examined the structure-biodegradability relationships of 13 FCAs, including nine commercially available unsaturated FCAs and four structurally similar saturated ones, in an anaerobic defluorinating enrichment and an activated sludge community.
View Article and Find Full Text PDFPer- and polyfluoroalkyl substances (PFAS) are a large group of manmade chemicals that impose emerging environmental concerns. Among them, short-chain per- and polyfluorinated carboxylic acids represent an important subgroup used as building blocks of biologically active chemicals and functional materials. Some are also considered PFAS alternatives, and some could be byproducts of the physicochemical treatment of PFAS.
View Article and Find Full Text PDFThe addition of iodide (I) in the UV/sulfite system (UV/S) significantly accelerated the reductive degradation of perfluorosulfonates (PFSAs, CFSO) and perfluorocarboxylates (PFCAs, CFCOO). Using the highly recalcitrant perfluorobutane sulfonate (CFSO) as a probe, we optimized the UV/sulfite + iodide system (UV/S + I) to degrade = 1-7 PFCAs and = 4, 6, 8 PFSAs. In general, the kinetics of per- and polyfluoroalkyl substance (PFAS) decay, defluorination, and transformation product formations in UV/S + I were up to three times faster than those in UV/S.
View Article and Find Full Text PDFOmega-hydroperfluorocarboxylates (ω-HPFCAs, CF-(CF)-COO) are commercially available in bulk quantities and have been applied in agrochemicals, fluoropolymer production, and semiconductor coating. In this study, we used kinetic measurements, theoretical calculations, model compound experiments, and transformation product analyses to reveal novel mechanistic insights into the reductive and oxidative transformation of ω-HPFCAs. Like perfluorocarboxylates (PFCAs, CF-(CF)-COO), the direct linkage between CF- and -COO enables facile degradation under UV/sulfite treatment.
View Article and Find Full Text PDFThe UV-sulfite reductive treatment using hydrated electrons () is a promising technology for destroying perfluorocarboxylates (PFCAs, CFCOO) in any chain length. However, the C-H bonds formed in the transformation products strengthen the residual C-F bonds and thus prevent complete defluorination. Reductive treatments of fluorotelomer carboxylates (FTCAs, CF-CHCH-COO) and sulfonates (FTSAs, CF-CHCH-SO) are also sluggish because the ethylene linker separates the fluoroalkyl chain from the end functional group.
View Article and Find Full Text PDFIn this study, we evaluated the biotransformation mechanisms of lincomycin (LIN) and three fluoroquinolone antibiotics (FQs), ciprofloxacin (CFX), norfloxacin (NFX), and ofloxacin (OFX), which regularly enter aquatic environments through human activities, by different ammonia-oxidizing microorganisms (AOM). The organisms included a pure culture of the complete ammonia oxidizer (comammox) Nitrospira inopinata, an ammonia oxidizing archaeon (AOA) Nitrososphaera gargensis, and an ammonia-oxidizing bacterium (AOB) Nitrosomonas nitrosa Nm90. The removal of these antibiotics by the pure microbial cultures and the protein-normalized biotransformation rate constants indicated that LIN was significantly co-metabolically biotransformed by AOA and comammox, but not by AOB.
View Article and Find Full Text PDFThe C-F bond is one of the strongest single bonds in nature. Although microbial reductive dehalogenation is well known for the other organohalides, no microbial reductive defluorination has been documented for perfluorinated compounds except for a single, nonreproducible study on trifluoroacetate. Here, we report on C-F bond cleavage in two C per- and polyfluorinated compounds via reductive defluorination by an organohalide-respiring microbial community.
View Article and Find Full Text PDFThis study explores structure-reactivity relationships for the degradation of emerging perfluoroalkyl ether carboxylic acid (PFECA) pollutants with ultraviolet-generated hydrated electrons (e). The rate and extent of PFECA degradation depend on both the branching extent and the chain length of oxygen-segregated fluoroalkyl moieties. Kinetic measurements, theoretical calculations, and transformation product analyses provide a comprehensive understanding of the PFECA degradation mechanisms and pathways.
View Article and Find Full Text PDFEnviron Sci Technol
August 2019
The recently discovered complete ammonia-oxidizing (comammox) bacteria occur in various environments, including wastewater treatment plants. To better understand their role in micropollutant biotransformation in comparison with ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA), we investigated the biotransformation capability of (the only comammox isolate) for 17 micropollutants. Asulam, fenhexamid, mianserin, and ranitidine were biotransformed by , (AOA), and Nm90 (AOB).
View Article and Find Full Text PDFThe abilities of three phylogenetically distant ammonia oxidizers, Nitrososphaera gargensis, an ammonia-oxidizing archaeon (AOA); Nitrosomomas nitrosa Nm90, an ammonia-oxidizing bacterium (AOB); and Nitrospira inopinata, the only complete ammonia oxidizer (comammox) available as a pure culture, to biotransform seven sulfonamides (SAs) were investigated. The removals and protein-normalized biotransformation rate constants indicated that the AOA strain N. gargensis exhibited the highest SA biotransformation rates, followed by N.
View Article and Find Full Text PDFThis study investigates critical structure-reactivity relationships within 34 representative per- and polyfluoroalkyl substances (PFASs) undergoing defluorination with UV-generated hydrated electrons. While C F-COO with variable fluoroalkyl chain lengths ( n = 2 to 10) exhibited a similar rate and extent of parent compound decay and defluorination, the reactions of telomeric C F-CHCH-COO and C F-SO showed an apparent dependence on the length of the fluoroalkyl chain. Cross comparison of experimental results, including different rates of decay and defluorination of specific PFAS categories, the incomplete defluorination from most PFAS structures, and the surprising 100% defluorination from CFCOO, leads to the elucidation of new mechanistic insights into PFAS degradation.
View Article and Find Full Text PDFBiotransformation of various micropollutants (MPs) has been found to be positively correlated with nitrification in activated sludge communities. To further elucidate the roles played by ammonia-oxidizing bacteria (AOB) and nitrite-oxidizing bacteria (NOB), we investigated the biotransformation capabilities of an NOB pure culture ( Nitrobacter sp.) and an AOB ( Nitrosomonas europaea)/NOB ( Nitrobacter sp.
View Article and Find Full Text PDF