This study introduces a novel approach that addresses the limitations of existing methods by integrating 2D image processing with 3D point cloud analysis, enhanced by interpretable neural networks. Unlike traditional methods that rely on either 2D or 3D data alone, our approach leverages the complementary strengths of both data types to improve detection accuracy in environments adversely affected by welding spatter and smoke. Our system employs an improved Faster R-CNN model with a ResNet50 backbone for 2D image analysis, coupled with an innovative orthogonal plane intersection line extraction algorithm for 3D point cloud processing.
View Article and Find Full Text PDF