Tendon injuries often exhibit limited healing capacity, frequently complicated by peritendinous adhesion, posing a substantial challenge in clinical tendon repair. Although present biomaterial-based membranes offer a promising strategy for tendon treatment, their clinical application is hindered by inflammation-induced adhesion. Herein, this study presents a dual-functional biomimetic tendon sheath based on a coaxial electrospun nanofibrous membrane for enhancing tendon repair and simultaneously preventing peritendinous adhesion.
View Article and Find Full Text PDFHeart-on-a-chip (HoC) has emerged as a highly efficient, cost-effective device for the development of engineered cardiac tissue, facilitating high-throughput testing in drug development and clinical treatment. HoC is primarily used to create a biomimetic microphysiological environment conducive to fostering the maturation of cardiac tissue and to gather information regarding the real-time condition of cardiac tissue. The development of architectural design and advanced manufacturing for these "3S" components, scaffolds, stimulation, and sensors is essential for improving the maturity of cardiac tissue cultivated on-chip, as well as the precision and accuracy of tissue states.
View Article and Find Full Text PDFTo effectively treat osteoarthritis (OA), the existing inflammation must be reduced before the cartilage damage can be repaired; this cannot be achieved with a single type of extracellular vesicles (EVs). Here, a hydrogel complex with logic-gates function is proposed that can spatiotemporally controlled release two types of EVs: interleukin 10 (IL-10) EVs to promote M2 polarization of macrophage, and SRY-box transcription factor 9 (SOX9) EVs to increase cartilage matrix synthesis. Following dose-of-action screening, the dual EVs are loaded into a matrix metalloporoteinase 13 (MMP13)-sensitive self-assembled peptide hydrogel (KM13E) and polyethylene glycol diacrylate/gelatin methacryloyl-hydrogel microspheres (PGE), respectively.
View Article and Find Full Text PDFThe incorporation of engineered muscle-tendon junction (MTJ) with organ-on-a-chip technology provides promising in vitro models for the understanding of cell-cell interaction at the interface between muscle and tendon tissues. However, developing engineered MTJ tissue with biomimetic anatomical interface structure remains challenging, and the precise co-culture of engineered interface tissue is further regarded as a remarkable obstacle. Herein, an interwoven waving approach is presented to develop engineered MTJ tissue with a biomimetic "M-type" interface structure, and further integrated into a precise co-culture microfluidic device for functional MTJ-on-a-chip fabrication.
View Article and Find Full Text PDFBioengineering (Basel)
February 2024
Gastric cancer poses a societal and economic burden, prompting an exploration into the development of materials suitable for gastric reconstruction. However, there is a dearth of studies on the mechanical properties of porcine and human stomachs. Therefore, this study was conducted to elucidate their mechanical properties, focusing on interspecies correlations.
View Article and Find Full Text PDFSurgical sutures for sealing gastric perforations (GP) are associated with severe inflammation and postoperative adhesions. Hydrogel bioadhesives offer a potential alternative for sutureless repair of GP; however, their application in minimally invasive surgery is limited due to their prefabricated patch-form, lacking in situ gelation capability. In this study, we emphasized an all-in-one minimally invasive strategy for sutureless repair of acute GP.
View Article and Find Full Text PDFObjective: Ischemic stroke has become one of the leading diseases for international death, which brings burden to the economy and society. Exosomes (Exos) derived following neural stem cells (NSCs) stimulation promote neurogenesis and migration of NSCs. However, Exos themselves are easily to be removed in vivo.
View Article and Find Full Text PDFPostsurgical pericardial adhesions pose increased risks of sequelae, prolonged reoperation time, and reduced visibility in the surgical field. Here, we introduce an injectable Janus hydrogel, which exhibits asymmetric adhesiveness properties after photocrosslinking, sustained delivering induced pluripotent stem cell-derived cardiomyocyte exosomes (iCM-EXOs) for post-heart surgery adhesion reduction. Our findings reveal that iCM-EXOs effectively attenuate oxidative stress in hydrogen peroxide-treated primary cardiomyocytes by inhibiting the activation of the transcription factor nuclear factor erythroid 2-related factor 2.
View Article and Find Full Text PDFArticular cartilage tissue engineering is being considered an alternative treatment strategy for promoting cartilage damage repair. Herein, we proposed a modular hydrogel-based bioink containing microsphere-embedded chondrocytes for 3D printing multiscale scaffolds integrating the micro and macro environment of the native articular cartilage. Gelatin methacryloyl (GelMA)/alginate microsphere was prepared by a microfluidic approach, and the chondrocytes embedded in the microspheres remained viable after being frozen and resuscitated.
View Article and Find Full Text PDFCardiovascular disease is a major cause of mortality worldwide, and current preclinical models including traditional animal models and 2D cell culture models have limitations in replicating human native heart physiology and response to drugs. Heart-on-a-chip (HoC) technology offers a promising solution by combining the advantages of cardiac tissue engineering and microfluidics to create in vitro 3D cardiac models, which can mimic key aspects of human microphysiological systems and provide controllable microenvironments. Herein, recent advances in HoC technologies are introduced, including engineered cardiac microtissue construction in vitro, microfluidic chip fabrication, microenvironmental stimulation, and real-time feedback systems.
View Article and Find Full Text PDF3D bioprinting is a revolutionary technology capable of replicating native tissue and organ microenvironments by precisely placing cells into 3D structures using bioinks. However, acquiring the ideal bioink to manufacture biomimetic constructs is challenging. A natural extracellular matrix (ECM) is an organ-specific material that provides physical, chemical, biological, and mechanical cues that are hard to mimic using a small number of components.
View Article and Find Full Text PDFRetinal pigment epithelial (RPE) cell transplantation is being explored as a feasible approach for treating age-related macular degeneration. The low aggregation ability of RPE cell suspensions or microtissues after transplantation has limited cell utilisation. Therefore, alternative transplantation strategies should be explored to induce cell aggregation and maintain cell viability.
View Article and Find Full Text PDFHierarchical anisotropy structure directing 3D cellular orientation plays a crucial role in designing tendon tissue engineering scaffolds. Despite recent development of fabrication technologies for controlling cellular organization and design of scaffolds that mimic the anisotropic structure of native tendon tissue, improvement of tenogenic differentiation remains challenging. Herein, we present 3D aligned poly (ε-caprolactone) nanofiber yarns (NFYs) of varying diameter, fabricated using a dry-wet electrospinning approach, that integrate with nano- and micro-scale structure to mimic the hierarchical structure of collagen fascicles and fibers in native tendon tissue.
View Article and Find Full Text PDFViscoelastic hydrogels can enhance 3D cell migration and proliferation due to the faster stress relaxation promoting the arrangement of the cellular microenvironment. However, most synthetic photocurable hydrogels used as bioink materials for 3D bioprinting are typically elastic. Developing a photocurable hydrogel bioink with fast stress relaxation would be beneficial for 3D bioprinting engineered 3D skeletal muscles in vitro and repairing volumetric muscle loss (VML) in vivo; however, this remains an ongoing challenge.
View Article and Find Full Text PDFThe current COVID-19 pandemic caused by SARS-Cov-2 is responsible for more than 6 million deaths globally. The development of broad-spectrum and cost-effective antivirals is urgently needed. Medicinal plants are renowned as a complementary approach in which antiviral natural products have been established as safe and effective drugs.
View Article and Find Full Text PDFHigh-density polyethylene (HDPE) is a promising material for the development of scaffold implants for auricle reconstruction. However, preparing a personalized HDPE auricle implant with favorable bioactive and antibacterial functions to promote skin tissue ingrowth is challenging. Herein, we present 3D-printed HDPE auricle scaffolds with satisfactory pore size and connectivity.
View Article and Find Full Text PDFDeveloping an injectable anisotropic scaffold with precisely topographic cues to induce 3D cellular organization plays a critical role in volumetric muscle loss (VML) repair in vivo. However, controlling aligned myofiber regeneration in vivo based on previous injectable scaffolds continues to prove challenging, especially in a 3D configuration. Herein, we prepare the monodisperse remote magnetic controlled short nanofibers (MSNFs) with a high yield using an advanced coaxial electrospinning-cyrocutting method.
View Article and Find Full Text PDFCurrently, stem cell transplantations in cardiac repair are limited owing to disadvantages, such as immunological rejection and poor cell viability. Although direct injection of exosomes can have a curative effect similar to that of stem cell transplantation, high clearance hinders its application in clinical practice. Previous reports suggested that induction of coronary collateralization can be a desired method of adjunctive therapy for someone who had missed the optimal operation time to attenuate myocardial ischemia.
View Article and Find Full Text PDFSkin necrosis is the most common complication in total auricular reconstruction, which is mainly induced by vascular compromise and local stress concentration of the overlying skin. Previous studies generally emphasized the increase in the skin flap blood supply, while few reports considered the mechanical factors. However, skin injury is inevitable due to uneasily altered loads generated by the intraoperative continuous negative suction and uneven cartilage framework structure.
View Article and Find Full Text PDFHeart disease is the main cause of death worldwide. Because death of the myocardium is irreversible, it remains a significant clinical challenge to rescue myocardial deficiency. Cardiac tissue engineering (CTE) is a promising strategy for repairing heart defects and offers platforms for studying cardiac tissue.
View Article and Find Full Text PDFDirect injection of chondrocytes in a minimally invasive way has been regarded as the significantly potential treatment for cartilage repair due to their ability to fill various irregular chondral defects. However, the low cell retention and survival after injection still limited their application in clinical transformation. Herein, we present chondrocyte-laden microspheres as cell carriers based on a double-network hydrogel by the combination of the chitosan and poly(ethylene glycol) diacrylate (PEGDA).
View Article and Find Full Text PDFThe integration of multiscale micro- and macroenvironment has been demonstrated as a critical role in designing biomimetic scaffolds for peripheral nerve tissue regeneration. While it remains a remarkable challenge for developing a biomimetic multiscale scaffold for enhancing 3D neuronal maturation and outgrowth. Herein, we present a 3D bioprinted multiscale scaffold based on a modular bioink for integrating the 3D micro- and macroenvironment of native nerve tissue.
View Article and Find Full Text PDFAligned topographical cue has been demonstrated as a critical role in neuronal guidance, and it is highly beneficial to develop a scaffold with aligned structure for peripheral nerve tissue regeneration. Although considerable efforts have been devoted to guiding neurite alignment and extension, it remains a remarkable challenge for developing a biomimetic scaffold for enhancing 3D aligned neuronal outgrowth. Herein, we present a core-shell scaffold based on aligned conductive nanofiber yarns (NFYs) within the hydrogel to mimic the 3D hierarchically aligned structure of the native nerve tissue.
View Article and Find Full Text PDFHistone methyltransferase KMT2D has diverse functions and distinct mechanisms in different cancers. Although we have previously found KMT2D serves as an oncogene that promotes tumor growth and metastasis in prostate cancer (PCa), the functions and mechanisms of KMT2D are complicated and most remain undefined. Here, the function of KMT2D regarding DNA damage in PCa and the underlying mechanisms of KMT2D in epigenetic regulation were explored in a series of studies.
View Article and Find Full Text PDF