Publications by authors named "YaoSheng Chen"

Fin bud initiation factor homolog (Fibin) is a secreted protein that is relatively conserved among species. It is closely related to fin bud development and can regulate a variety of cellular processes. In our previous high-throughput chromosome conformation capture (Hi-C) study of pig embryonic muscle development, it was found that Fibin has high expression and activity during the development of pig primary muscle fibers.

View Article and Find Full Text PDF

Intramuscular fat (IMF) is a complex adipose tissue within skeletal muscle, appearing specially tissue heterogeneous, and the factors influencing its formation remain unclear. In conditions such as diabetes, aging, and muscle wasting, IMF was deposited in abnormal locations in skeletal muscle, damaged the normal physiological functions of skeletal muscle. Here, we used Longissimus dorsi muscles from pigs with different IMF contents as samples and adopted a method combining spatial transcriptome (ST) and single-nucleus RNA-seq to identify the spatial heterogeneity of IMF.

View Article and Find Full Text PDF

The FecB mutation, a single-point mutation (c.A746G; p.Q249R) in bone morphogenetic protein receptor type 1 B (BMPR1B), is associated with increased ovulation quotas and litter size in sheep.

View Article and Find Full Text PDF
Article Synopsis
  • * SOX9 is a key transcription factor that significantly influences sex determination and the development of male reproductive organs.
  • * Recent research highlights the importance of gonadal enhancers in sex determination, aiming to elucidate the regulatory mechanisms behind this process and aid in developing techniques for animal sex manipulation.
View Article and Find Full Text PDF

Porcine reproductive and respiratory syndrome virus (PRRSV) continues to cause significant economic losses to the global swine industry, yet effective prevention and control measures remain elusive. The development of novel antivirals is thus urgently needed. Rifampicin (RFP), a semisynthetic derivative of rifamycin, has been previously reported to inhibit the replication of certain mammalian DNA viruses as well as RNA viruses.

View Article and Find Full Text PDF

Ubiquitin-conjugation enzyme E2C (UBE2C) is a crucial component of the ubiquitin-proteasome system that is involved in numerous cancers. In this study, we find that UBE2C expression is significantly increased in mouse embryos, a critical stage during skeletal muscle development. We further investigate the function of UBE2C in myogenesis.

View Article and Find Full Text PDF

Coat colour largely determines the market demand for several cat breeds. The KIT proto-oncogene (KIT) gene is a key gene controlling melanoblast differentiation and melanogenesis. KIT mutations usually cause varied changes in coat colour in mammalian species.

View Article and Find Full Text PDF

Intramuscular fat (IMF) plays a crucial role in enhancing meat quality, enriching meat flavor, and overall improving palatability. In this study, Single-cell RNA sequencing was employed to analyze the longissimus dorsi (LD) obtained from Guangdong small-ear spotted pigs (GDSS, with high IMF) and Yorkshire pigs (YK, with low IMF). GDSS had significantly more Fibro/Adipogenic Progenitor (FAPs), in which the CD9 negative FAPs (FAP) having adipogenic potential, as demonstrated by assays using cells originated from mouse muscle.

View Article and Find Full Text PDF

Bone morphogenetic protein 15 (BMP15) plays a crucial role in the porcine follicular development. However, its exact functions in the in vitro maturation (IVM) of porcine oocytes remain largely unknown. Here, through cytoplasmic injection of a preassembled crRNA-tracrRNA-Cas9 ribonucleoprotein complex, we achieved BMP15 disruption in approximately 54 % of the cultured porcine oocytes.

View Article and Find Full Text PDF

As obligate parasites, viruses have evolved multiple strategies to evade the host immune defense. Manipulation of the host proteasome system to degrade specific detrimental factors is a common viral countermeasure. To identify host proteins targeted for proteasomal degradation by porcine reproductive and respiratory syndrome virus (PRRSV), we conducted a quantitative proteomics screen of PRRSV-infected Marc-145 cells under the treatment with proteasome inhibitor MG132.

View Article and Find Full Text PDF

African swine fever virus (ASFV) and porcine reproductive and respiratory syndrome virus (PRRSV) infections lead to severe respiratory diseases in pigs, resulting in significant economic losses for the global swine industry. While numerous studies have focused on specific gene functions or pathway activities during infection, an investigation of shared immune responses in porcine alveolar macrophages (PAMs) after ASFV and PRRSV infections was lacking. In this study, we conducted a comparison using two single-cell transcriptomic datasets generated from PAMs under ASFV and PRRSV infection.

View Article and Find Full Text PDF

The clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 system has been widely used to create animal models for biomedical and agricultural use owing to its low cost and easy handling. However, the occurrence of erroneous cleavage (off-targeting) may raise certain concerns for the practical application of the CRISPR-Cas9 system. In this study, we created a melanocortin 1 receptor ()-edited pig model through somatic cell nuclear transfer (SCNT) by using porcine kidney cells modified by the CRISPR-Cas9 system.

View Article and Find Full Text PDF
Article Synopsis
  • The FarmGTEx project aims to create a public database of genetic variants in livestock to connect genetic differences with physical traits, benefiting both animal breeding and human health research.
  • The pilot phase, PigGTEx, involved analyzing 5,457 RNA-sequencing and 1,602 whole-genome sequencing samples from pigs, leading to the development of a genotype imputation panel and associations between millions of genetic variants and transcriptomic traits across 34 different tissues.
  • The study highlights the tissue-specific regulatory effects of these variants, revealing molecular mechanisms affecting 207 complex pig traits while also demonstrating the relevance of pigs as models for understanding human gene expression and genetic regulation.
View Article and Find Full Text PDF

Background: Chinese indigenous pigs are popular with consumers for their juiciness, flavour and meat quality, but they have lower meat production. Insulin-like growth factor 2 (IGF2) is a maternally imprinted growth factor that promotes skeletal muscle growth by regulating cell proliferation and differentiation. A single nucleotide polymorphism (SNP) within intron 3 of porcine IGF2 disrupts a binding site for the repressor, zinc finger BED-type containing 6 (ZBED6), leading to up-regulation of IGF2 and causing major effects on muscle growth, heart size, and backfat thickness.

View Article and Find Full Text PDF

Structural variations have emerged as an important driving force for genome evolution and phenotypic variation in various organisms, yet their contributions to genetic diversity and adaptation in domesticated animals remain largely unknown. Here we constructed a pangenome based on 250 sequenced individuals from 32 pig breeds in Eurasia and systematically characterized coding sequence presence/absence variations (PAVs) within pigs. We identified 308.

View Article and Find Full Text PDF

Krüppel-like factor 4 (KLF4) is an evolutionarily conserved zinc finger-containing transcription factor that regulates diverse cellular processes such as cell proliferation, apoptosis, and differentiation. Our previous study showed that KLF4 expression is upregulated in skeletal muscle ontogeny during embryonic development in pigs, suggesting its importance for skeletal muscle development and muscle function. We revealed here that KLF4 plays a critical role in skeletal muscle development and regeneration.

View Article and Find Full Text PDF

In Brief: The regulatory role of BMP15 on porcine ovarian follicular development still remains unclear. This study reveals that biallelic editing of BMP15 impairs SMAD signaling and inhibits granulosa cell proliferation, resulting in porcine follicular development arrest and ovarian hypoplasia.

Abstract: Bone morphogenetic protein 15 (BMP15) is a member of the transforming growth factor beta (TGF-β) superfamily, which is critical for facilitating ovarian folliculogenesis in mono-ovulatory mammalian species but is not essential in polyovulatory mice.

View Article and Find Full Text PDF

Improving the prediction accuracies of economically important traits in genomic selection (GS) is a main objective for researchers and breeders in the livestock industry. This study aims at utilizing potentially functional SNPs and QTLs identified with various genome-wide association study (GWAS) models in GS of pig growth traits. We used three well-established GWAS methods, including the mixed linear model, Bayesian model and meta-analysis, as well as 60K SNP-chip and whole genome sequence (WGS) data from 1734 Yorkshire and 1123 Landrace pigs to detect SNPs related to four growth traits: average daily gain, backfat thickness, body weight and birth weight.

View Article and Find Full Text PDF

E3 ubiquitin ligases are closely related to cell division, differentiation, and survival in all eukaryotes and play crucial regulatory roles in multiple biological processes and diseases. While Deltex2, as a member of the DELTEX family ubiquitin ligases, is characterized by a RING domain followed by a C-terminal domain (DTC), its functions and underlying mechanisms in myogenesis have not been fully elucidated. Here, we report that Deltex2, which is highly expressed in muscles, positively regulates myoblast proliferation via mediating the expression of Pax7.

View Article and Find Full Text PDF
Article Synopsis
  • Skeletal muscle development is crucial for both medical applications and agricultural improvements, starting from somites where muscle precursor cells are formed.
  • The study analyzed gene expression and chromatin accessibility in pig embryos to map out the development of skeletal muscle, identifying specific cells and their differentiation pathways.
  • Key findings highlight new genes associated with muscle growth and potential regulators like EGR1 and RHOB, which may have implications for understanding muscle diseases in humans.
View Article and Find Full Text PDF

Bone morphogenetic protein 15 (BMP15) is an X-linked gene encoding an oocyte secreted factor, which plays varied functions in the female fertility between mono-ovulatory and poly-ovulatory mammalian species. We previously found that knockout of BMP15 completely blocked porcine follicular development at preantral stages. However, the specific function of BMP15 on porcine oocytes in vitro maturation remains largely unknown.

View Article and Find Full Text PDF

The white coat color of Yorkshire pigs is caused by the dominant white allele, which has been associated with at least one copy of the 450-kb duplication encompassing the entire gene and a splice mutation (G > A) at the first base of intron 17. The splice mutation in has an adverse effect on pigmentation in mice. Therefore, removing the 450 kb duplications harboring the copy with splice mutations is expected to affect Yorkshire pig pigmentation.

View Article and Find Full Text PDF

Porcine reproductive and respiratory syndrome viruses (PRRSVs) pose a serious threat to the swine industry in China, which has caused great difficulties for porcine reproductive and respiratory syndrome (PRRS) immune prevention and control, due to its easily mutable and recombinant nature. In this study, two novel PRRSV strains, which were named GD-H1 and GD-F1, were isolated and fully sequenced from pig farms in Guangdong province, China. The phylogenetic analysis and recombination analysis revealed that the GD-H1 and GD-F1 were generated by the recombination of NADC30-like and NADC34-like strains which were different from the previously prevalent strain.

View Article and Find Full Text PDF

Quercetin (QUE) is a component of the flavonoid family that shows various therapeutic properties, such as antioxidant effects. However, whether QUE affects porcine oocyte aging has not yet been investigated. Therefore, in this study, we applied various doses of QUE to freshly isolated porcine oocytes and found that 10 µM QUE improved the oocyte maturation rate , as reflected by the increased degree of cumulus cell expansion and first polar body extrusion.

View Article and Find Full Text PDF

Protein arginine methyltransferase 1 (PRMT1) methylates a variety of histone and nonhistone protein substrates to regulate multiple cellular functions such as transcription, DNA damage response, and signal transduction. It has been reported as an emerging regulator of various metabolic pathways including glucose metabolism in the liver, atrophy in the skeletal muscle, and lipid catabolism in the adipose tissue. However, the underlying mechanisms governing how PRMT1 regulates adipogenesis remain elusive.

View Article and Find Full Text PDF