Scale-down model qualification is an important step for developing a large-scale cell culture process to enhance process understanding and support process characterization studies. Traditionally, only harvest data are used to show consistency between small-scale and large-scale bioreactor performance, allowing attributes that are dynamic over the cell culture period to be overlooked. A novel statistical method, orthogonal projections to latent structures (OPLS) analysis, can be utilized to compare time-course cell culture data across scales.
View Article and Find Full Text PDF: Sepsis increases cardiovascular disease and causes death. Ischemic heart disease (IHD) without acute myocardial infarction has been discussed less, and the relationship between risk factors and IHD in septicemia survivors within six months is worthy of in-depth study. Our study demonstrated the incidence of IHD and the possible risk factors for IHD in septicemia patients within six months.
View Article and Find Full Text PDFBackground: Premenstrual syndrome (PMS) is a multifactorial disorder caused by hormone and autonomic imbalance. In our study, hyperglycemia-induced insulin secretion increased progesterone secretion and progressive autonomic imbalance. The young patients with diabetes mellitus (DM) revealed hypo-parasympathetic function and hypersympathetic function compared with nondiabetic controls.
View Article and Find Full Text PDFSensing and responding to signals is a fundamental ability of living systems, but despite substantial progress in the computational design of new protein structures, there is no general approach for engineering arbitrary new protein sensors. Here, we describe a generalizable computational strategy for designing sensor-actuator proteins by building binding sites de novo into heterodimeric protein-protein interfaces and coupling ligand sensing to modular actuation through split reporters. Using this approach, we designed protein sensors that respond to farnesyl pyrophosphate, a metabolic intermediate in the production of valuable compounds.
View Article and Find Full Text PDFArtif Cells Nanomed Biotechnol
December 2019
Sorafenib is an oral multikinase inhibitor that has become an established therapeutic approach in advanced hepatocellular carcinoma (HCC). However, the benefit of sorafenib in clinical therapy is often affected by drug resistance. Therefore, it is important to explore the mechanisms underlying sorafenib resistance and to develop individualized therapeutic strategies for coping with this problem.
View Article and Find Full Text PDFIn the biopharmaceutical industry, glycosylation is a critical quality attribute that can modulate the efficacy of a therapeutic glycoprotein. Obtaining a consistent glycoform profile is desired because molecular function can be defined by its carbohydrate structures. Specifically, the fucose content of oligosaccharides in glycoproteins is one of the most important attributes that can significantly affect antibody-dependent cellular cytotoxicity (ADCC) activity.
View Article and Find Full Text PDFBiomanufacturing factories of the future are transitioning from large, single-product facilities toward smaller, multi-product, flexible facilities. Flexible capacity allows companies to adapt to ever-changing pipeline and market demands. Concentrated fed-batch (CFB) cell culture enables flexible manufacturing capacity with limited volumetric capacity; it intensifies cell culture titers such that the output of a smaller facility can rival that of a larger facility.
View Article and Find Full Text PDFLeave-one-out green fluorescent protein (LOOn-GFP) is a circularly permuted and truncated GFP lacking the nth β-strand element. LOO7-GFP derived from the wild-type sequence (LOO7-WT) folds and reconstitutes fluorescence upon addition of β-strand 7 (S7) as an exogenous peptide. Computational protein design may be used to modify the sequence of LOO7-GFP to fit a different peptide sequence, while retaining the reconstitution activity.
View Article and Find Full Text PDFHigh-throughput systems and processes have typically been targeted for process development and optimization in the bioprocessing industry. For process characterization, bench scale bioreactors have been the system of choice. Due to the need for performing different process conditions for multiple process parameters, the process characterization studies typically span several months and are considered time and resource intensive.
View Article and Find Full Text PDFIt is a common practice in biotherapeutic manufacturing to define a fixed-volume feed strategy for nutrient feeds, based on historical cell demand. However, once the feed volumes are defined, they are inflexible to batch-to-batch variations in cell growth and physiology and can lead to inconsistent productivity and product quality. In an effort to control critical quality attributes and to apply process analytical technology (PAT), a fully automated cell culture feedback control system has been explored in three different applications.
View Article and Find Full Text PDFMotivation: Accuracy in protein design requires a fine-grained rotamer search, multiple backbone conformations, and a detailed energy function, creating a burden in runtime and memory requirements. A design task may be split into manageable pieces in both three-dimensional space and in the rotamer search space to produce small, fast jobs that are easily distributed. However, these jobs must overlap, presenting a problem in resolving conflicting solutions in the overlap regions.
View Article and Find Full Text PDFVolumetric productivity and product quality are two key performance indicators for any biopharmaceutical cell culture process. In this work, we showed proof-of-concept for improving both through the use of alternating tangential flow perfusion seed cultures coupled with high-seed fed-batch production cultures. First, we optimized the perfusion N-1 stage, the seed train bioreactor stage immediately prior to the production bioreactor stage, to minimize the consumption of perfusion media for one CHO cell line and then successfully applied the optimized perfusion process to a different CHO cell line.
View Article and Find Full Text PDFResistin and endothelin (ET)-1 have been reported to inhibit adipogenesis and regulate adipocyte insulin resistance, respectively. Although both hormones interact with each other, the exact signaling pathway of ET-1 to act on resistin gene expression is still unknown. Using 3T3-L1 adipocytes, we investigated the signaling pathways involved in ET-1-stimulated resistin gene expression.
View Article and Find Full Text PDFWild-type green fluorescent protein (GFP) folds on a time scale of minutes. The slow step in folding is a cis-trans peptide bond isomerization. The only conserved cis-peptide bond in the native GFP structure, at P89, was remodeled by the insertion of two residues, followed by iterative energy minimization and side chain design.
View Article and Find Full Text PDFIEEE/ACM Trans Comput Biol Bioinform
August 2014
Nature possesses a secret formula for the energy as a function of the structure of a protein. In protein design, approximations are made to both the structural representation of the molecule and to the form of the energy equation, such that the existence of a general energy function for proteins is by no means guaranteed. Here, we present new insights toward the application of machine learning to the problem of finding a general energy function for protein design.
View Article and Find Full Text PDFImproving the productivity of a biopharmaceutical Chinese hamster ovary (CHO) fed-batch cell culture can enable cost savings and more efficient manufacturing capacity utilization. One method for increasing CHO cell productivity is the addition of histone deacetylase (HDAC) inhibitors to the cell culture process. In this study, we examined the effect of valproic acid (VPA, 2-propylpentanoic acid), a branched-chain carboxylic acid HDAC inhibitor, on the productivity of three of our CHO cell lines that stably express monoclonal antibodies.
View Article and Find Full Text PDFThe use of cell-cell communication or "quorum sensing (QS)" elements from Gram-negative Proteobacteria has enabled synthetic biologists to begin engineering systems composed of multiple interacting organisms. However, additional tools are necessary if we are to progress toward synthetic microbial consortia that exhibit more complex, dynamic behaviors. EsaR from Pantoea stewartii subsp.
View Article and Find Full Text PDFEndothelin (ET)-1 and suppressor of cytokine signaling (SOCS)-3 were respectively found to regulate energy metabolism and hormone signaling in fat cells. Although ET-1 can also regulate the expression of SOCS-3-stimulating hormones, it is still unknown whether ET-1 regulates SOCS-3 gene expression. This study investigated the pathways involved in ET-1's modulation of SOCS-3 gene expression in 3T3-L1 adipocytes.
View Article and Find Full Text PDFSeveral versions of split green fluorescent protein (GFP) fold and reconstitute fluorescence, as do many circular permutants, but little is known about the dependence of reconstitution on circular permutation. Explored here is the capacity of GFP to fold and reconstitute fluorescence from various truncated circular permutants, herein called "leave-one-outs" using a quantitative in vivo solubility assay and in vivo reconstitution of fluorescence. Twelve leave-one-out permutants are discussed, one for each of the 12 secondary structure elements.
View Article and Find Full Text PDFThe sequential order of secondary structural elements in proteins affects the folding and activity to an unknown extent. To test the dependence on sequential connectivity, we reconnected secondary structural elements by their solvent-exposed ends, permuting their sequential order, called "rewiring". This new protein design strategy changes the topology of the backbone without changing the core side chain packing arrangement.
View Article and Find Full Text PDFA highly productive chemically defined fed-batch process was developed to maximize titer and volumetric productivity for Chinese hamster ovary cell-based recombinant protein manufacturing. Two cell lines producing a recombinant antibody (cell line A) and an Fc-fusion protein (cell line B) were used for development. Both processes achieved product titers of 10 g/L on day 18 under chemically defined conditions.
View Article and Find Full Text PDFA recombinant monoclonal antibody produced by Chinese hamster ovary (CHO) cell fed-batch culture was found to have amino acid sequence misincorporation upon analysis by intact mass and peptide mapping mass spectrometry. A detailed analysis revealed multiple sites for asparagine were being randomly substituted by serine, pointing to mistranslation as the likely source. Results from time-course analysis of cell culture suggest that misincorporation was occurring midway through the fed-batch process and was correlated to asparagine reduction to below detectable levels in the culture.
View Article and Find Full Text PDF