With certain amounts of sodium tert-butoxide and tert-butanol as additives, catalytic amounts of an inexpensive and easy-to-handle copper source Cu(OAc)(2)⋅H(2)O, a commercially available and air-stable non-racemic dipyridylphosphine ligand, as well as the stoichiometric desirable hydride donor polymethylhydrosiloxane (PMHS), formed a versatile in situ catalyst system for the enantioselective reduction of a broad spectrum of prochiral diaryl and aryl heteroarylketones in air, in high yields and with good to excellent enantioselectivities (up to 96 %). In particular, the practical viability of this process was evinced by its successful applications in the asymmetric synthesis of optically enriched potent antihistaminic drugs orphenadrine and neobenodine.
View Article and Find Full Text PDFIn the presence of PhSiH(3) as the reductant, the combination of enantiomeric dipyridylphosphane ligands and Cu(OAc)(2)·H(2)O, which is an easy-to-handle and inexpensive copper salt, led to a remarkably practical and versatile chiral catalyst system. The stereoselective formation of a selection of synthetically interesting β-, γ- or δ-halo alcohols bearing high degrees of enantiopurity (up to 99.9% enantiomeric excess (ee)) was realized with a substrate-to-ligand molar ratio (S/L) of up to 10,000.
View Article and Find Full Text PDF