Publications by authors named "Yao-Pin Lin"

Chlorophyll (Chl) is made up of the tetrapyrrole chlorophyllide and phytol, a diterpenoid alcohol. The photosynthetic protein complexes utilize Chl for light harvesting to produce biochemical energy for plant development. However, excess light and adverse environmental conditions facilitate generation of reactive oxygen species, which damage photosystems I and II (PSI and PSII) and induce their turnover.

View Article and Find Full Text PDF

Chlorophyll (Chl) is composed of a tetrapyrrole ring and a phytol tail, which facilitate light energy absorbance and assembly with photosynthetic protein complexes, respectively. Chl dephytylation, the hydrolytic removal of the phytol tail, is considered a pivotal step in diverse physiological processes, such as Chl salvage during repair of the photosystem, the Chl cycle in the adjustment of antenna size, and Chl breakdown in leaf senescence and fruit maturation. Moreover, phytol is a component of the tocopherols, a major form of vitamin E that is essential in the human diet.

View Article and Find Full Text PDF
Article Synopsis
  • Supernumerary B chromosomes are nonessential parts of the nuclear genome found in all eukaryotic groups, differing from normal A chromosomes in structure and inheritance.
  • Although traditionally thought to lack functional genes, maize B chromosomes possess control elements that impact the behavior of A chromosomes during cell division.
  • Recent research identified 32 novel B-related transcript sequences, confirming that the maize B chromosome contains transcriptionally active regions that can influence A chromosome gene expression.
View Article and Find Full Text PDF

Supernumerary B chromosomes (Bs) are nonessential chromosomes that are considered genetically inert. However, the maize B carries control elements that direct its behavior, such as that of nondisjunction, during the second pollen mitosis, and affects normal A chromosomes during cell division. Recently, the maize B has been found to contain transcriptionally active sequences and to affect the transcription of genes on A chromosomes.

View Article and Find Full Text PDF

Tocopherols are synthesized in photosynthetic organisms, playing a role in plant stress tolerance. Recent studies showed that the phytol moiety of tocopherols comes from the salvaged phytol chain during chlorophyll degradation. However, the enzyme(s) responsible for chlorophyll dephytylation remains unclear.

View Article and Find Full Text PDF

Chlorophyll turns over in green organs during photosystem repair and is salvaged via de- and rephytylation, but the enzyme involved in dephytylation is unknown. We have identified an Arabidopsis thaliana thylakoid protein with a putative hydrolase domain that can dephytylate chlorophyll in vitro and in vivo. The corresponding locus, CHLOROPHYLL DEPHYTYLASE1 (CLD1), was identified by mapping a semidominant, heat-sensitive, missense allele (cld1-1).

View Article and Find Full Text PDF

B chromosomes are dispensable elements that occur in many species, including maize. The maize B chromosome is acrocentric and highly heterochromatic and undergoes nondisjunction during the second pollen mitosis. In this study, we determined the genetic behavior and organization of two naturally occurring B chromosome variants (designated B(ta) and B(tb)).

View Article and Find Full Text PDF

Chlorophylls, the most abundant pigments in the photosynthetic apparatus, are constantly turned over as a result of the degradation and replacement of the damage-prone reaction center D1 protein of photosystem II. Results from isotope labeling experiments suggest that chlorophylls are recycled by reutilization of chlorophyllide and phytol, but the underlying mechanism is unclear. In this study, by characterization of a heat-sensitive Arabidopsis mutant we provide evidence of a salvage pathway for chlorophyllide a.

View Article and Find Full Text PDF

Maize B chromosome sequences have been previously cloned by microdissection, and all are proven to be highly repetitive, to be homologous to the normal complement, and to show no similarity to any published gene other than mobile elements. In this study, we isolated sequences from defined B regions. The strategy involved identification and then mapping of AFLP-derived B fragments before cloning.

View Article and Find Full Text PDF