Publications by authors named "Yao-Hsuan Lai"

Herein, we report the total synthesis of landomycins Q and R as well as the aglycone core, namely anhydrolandomycinone and a related core analogue. The synthesis features an acetate-assisted arylation method for construction of the hindered B-ring in the core component and a one-pot aromatization-deiodination-denbenzylation procedure to streamline the global functional and protecting group manuipulation. Subsequent cytotoxicity and antibacterial studies revealed that the landomycin R is a potential antibacterial agent against methicillin-resistant .

View Article and Find Full Text PDF

Traditional methods of monitoring biochemical reactions measure certain detectable reagents or products while assuming that the undetectable species follow the stoichiometry of the reactions. Here, based upon the metal-oxide thin-film transistor (TFT) biosensor, we develop a real-time molecular diffusion model to benchmark the concentration of the reagents and products. Using the nicotinamide adenine dinucleotide (NADH)-oxaloacetic acid with the enzyme of malate dehydrogenase as an example, mixtures of different reagent concentrations were characterized to extract the ratio of remaining concentrations between NAD and NADH.

View Article and Find Full Text PDF

This article reviews optical biosensors and their integration with microfluidic channels. The integrated biosensors have the advantages of higher accuracy and sensitivity because they can simultaneously monitor two or more parameters. They can further incorporate many functionalities such as electrical control and signal readout monolithically in a single semiconductor chip, making them ideal candidates for point-of-care testing.

View Article and Find Full Text PDF

Understanding the binding affinities and kinetics of protein-ligand interactions using a label-free method is crucial for identifying therapeutic candidates in clinical diagnostics and drug development. In this work, the IGZO-TFT (thin-film transistor) biosensor integrated with a tailored microfluidic chip was developed to explore binding kinetics of protein-ligand biochemical interactions in the real-time manner. The IGZO-TFT sensor extracts the binding characteristics through sensing biomolecules by their electrical charges.

View Article and Find Full Text PDF