Increasing evidence suggests that chromosomal regions containing microRNAs are functionally important in cancers. Here, we show that genomic loci encoding miR-204 are frequently lost in multiple cancers, including ovarian cancers, pediatric renal tumors, and breast cancers. MiR-204 shows drastically reduced expression in several cancers and acts as a potent tumor suppressor, inhibiting tumor metastasis in vivo when systemically delivered.
View Article and Find Full Text PDFAlthough decades of research have established that androgen is essential for spermatogenesis, androgen's mechanism of action remains elusive. This is in part because only a few androgen-responsive genes have been definitively identified in the testis. Here, we propose that microRNAs--small, non-coding RNAs--are one class of androgen-regulated trans-acting factors in the testis.
View Article and Find Full Text PDFDecoupling of transcription and translation during postmeiotic germ cell differentiation is critical for successful spermatogenesis. Here we establish that the interaction between microRNAs and actin-associated protein Arpc5 sets the stage for an elaborate translational control mechanism by facilitating the sequestration of germ cell mRNAs into translationally inert ribonucleoprotein particles until they are later translated. Our studies reveal that loss of microRNA-dependent regulation of Arpc5, which controls the distribution of germ cell mRNAs between translationally active and inactive pools, results in abnormal round spermatid differentiation and impaired fertility.
View Article and Find Full Text PDFThough roles of β-catenin signaling during testis development have been well established, relatively little is known about its role in postnatal testicular physiology. Even less is known about its role in post-meiotic germ cell development and differentiation. Here, we report that β-catenin is highly expressed in post-meiotic germ cells and plays an important role during spermiogenesis in mice.
View Article and Find Full Text PDFA thorough understanding of the events during mammalian spermatogenesis requires studying specific molecular signatures of individual testicular cell populations as well as their interaction in co-cultures. However, most purification techniques to isolate specific testicular cell populations are time-consuming, require large numbers of animals, and/or are only able to isolate a few cell types. Here we describe a cost-effective and timesaving approach that uses a single protocol to enrich multiple testicular cell populations (Sertoli, Leydig, and several spermatogenic cell populations) from as few as one mouse.
View Article and Find Full Text PDFT-cell receptor-beta (TCRbeta) genes naturally acquire premature termination codons (PTCs) as a result of programmed gene rearrangements. PTC-bearing TCRbeta transcripts are dramatically down-regulated to protect T-cells from the deleterious effects of the truncated proteins that would otherwise be produced. Here we provide evidence that two responses collaborate to elicit this dramatic down-regulation.
View Article and Find Full Text PDFNonsense mutations create premature termination codons (PTCs), leading to the generation of truncated proteins, some of which have deleterious gain-of-function or dominant-negative activity. Protecting cells from such aberrant proteins is non-sense-mediated decay (NMD), an RNA surveillance pathway that degrades transcripts harboring PTCs. A second response to nonsense mutations is the up-regulation of alternatively spliced transcripts that skip the PTC.
View Article and Find Full Text PDFThe T-cell receptor (TCR) locus undergoes programmed rearrangements that frequently generate premature termination codons (PTCs). The PTC-bearing transcripts derived from such nonproductively rearranged genes are dramatically downregulated by the nonsense-mediated decay (NMD) pathway. Here, we show that depletion of the NMD factor UPF3b does not impair TCRbeta NMD, thereby distinguishing it from classical NMD.
View Article and Find Full Text PDFNonsense-mediated mRNA decay (NMD) is a quality-control mechanism that selectively degrades mRNAs harboring premature termination (nonsense) codons. If translated, these mRNAs can produce truncated proteins with dominant-negative or deleterious gain-of-function activities. In this review, we describe the molecular mechanism of NMD.
View Article and Find Full Text PDFNonsense-associated altered splicing (NAS) is a putative correction response that upregulates alternatively spliced transcripts that have skipped offending premature termination codons (PTCs). Here, we examined whether NAS has characteristics in common with nonsense-mediated decay (NMD), a surveillance mechanism that degrades PTC-bearing mRNAs. We discovered that although NAS shared the need for a Kozak AUG to define frame, it differed from NMD.
View Article and Find Full Text PDF