Publications by authors named "Yao-Chen Li"

Background: The clinical outcomes of patients with resected TNM non-small cell lung cancer (NSCLC) with the same tumor-node-metastasis (TNM) stage are diverse. Although other prognostic factors and prognostic prediction tools have been reported in many published studies, a convenient, accurate and specific prognostic prediction software for clinicians has not been developed. The purpose of our research was to develop this type of software that can analyze subdivided T and N staging and additional factors to predict prognostic risk and the corresponding mean and median survival time and 1-5-year survival rates of patients with resected TNM NSCLC.

View Article and Find Full Text PDF

Recent studies indicate that the long noncoding RNA ATB (lncATB) can induce the epithelial-mesenchymal transition (EMT) in cancer cells, but the specific cellular targets of lncATB require further investigation. In the present study, the upregulation of lncATB in breast cancer cells was validated in a TGF-β-induced EMT model. Gain- and loss-of-function studies demonstrated that lncATB enhanced cell migration, invasion and clonogenicity in vitro and in vivo.

View Article and Find Full Text PDF

Notch3 and GATA binding protein 3 (GATA-3) have been, individually, shown to maintain luminal phenotype and inhibit epithelial-mesenchymal transition (EMT) in breast cancers. In the present study, we report that Notch3 expression positively correlates with that of GATA-3, and both are associated with estrogen receptor-α (ERα) expression in breast cancer cells. We demonstrate in vitro and in vivo that Notch3 suppressed EMT and breast cancer metastasis by activating GATA-3 transcription.

View Article and Find Full Text PDF

The luminal A phenotype is the most common breast cancer subtype and is characterized by estrogen receptor α expression (ERα). Identification of the key regulator that governs the luminal phenotype of breast cancer will clarify the pathogenic mechanism and provide novel therapeutic strategies for this subtype of cancer. ERα signaling pathway sustains the epithelial phenotype and inhibits the epithelial-mesenchymal transition (EMT) of breast cancer.

View Article and Find Full Text PDF

Breast cancer, the most common malignancy among women worldwide, is a heterogeneous disease, and it therefore has remarkably different biological characteristics and clinical behavior. Breast cancer has been divided into several different molecular subtypes based on the status of estrogen receptor (ER), progesterone receptor (PR), human epidermal growth factor 2 (HER2, also named as ErbB2) status. Her2 is a member of EGFR family of transmembrane tyrosine kinase-type receptors, and is involved in the activation of its downstream signaling cascades, which could promote cell proliferation, metastasis, and angiogenesis in tumors.

View Article and Find Full Text PDF

Tamoxifen resistance presents a prominent clinical challenge in endocrine therapy for hormone sensitive breast cancer. However, the underlying mechanisms that contribute to tamoxifen resistance are not fully understood. In this study, we established a tamoxifen resistant MCF-7 cell line (MCF-7-Tam-R) by continuously incubating MCF-7 cells with 4-OH-tamoxifen.

View Article and Find Full Text PDF

Uncontrolled cell proliferation, genomic instability and cancer are closely related to the abnormal activation of the cell cycle. Therefore, blocking the cell cycle of cancer cells has become one of the key goals for treating malignancies. Unfortunately, the factors affecting cell cycle progression remain largely unknown.

View Article and Find Full Text PDF

N-acyl homoserine lactone (AHL)-based quorum sensing (QS) has been recognized to play an important role in the formation of biofilm. However, aerobic granular sludge is considered as a special biofilm, and its biological implication and role of AHL-based QS still remain unclear. This study investigated the role of AHL-based QS in aerobic granulation.

View Article and Find Full Text PDF

Transplantation of cultured olfactory ensheathing cells (OECs) into lesions can promote axonal regeneration. However, the acutely injured CNS environment affects the survival and proliferation of OECs which might impair its therapy effects. To investigate whether α-crystallin can promote the survival and proliferation of OECs, OECs were cultured with α-crystallin.

View Article and Find Full Text PDF

Purpose Of The Study: Retinitis pigmentosa (RP) is a group of genetic disorders and a slow loss of vision that is caused by a cascade of retinal degenerative events. We examined whether these retinal degenerative events were reduced after cultured mixtures of adult olfactory ensheathing cells (OECs) and olfactory nerve fibroblasts (ONFs) were transplanted into the subretinal space of 1-month-old RCS rat, a classic model of RP.

Materials And Methods: The changes in retinal photoreceptors and Müller cells of RCS rats after cell transplantation were observed by the expression of recoverin and glial fibrillary acidic protein (GFAP), counting peanut agglutinin (PNA)-positive cone outer segments and calculating the relative apoptotic area.

View Article and Find Full Text PDF

Müller cells are the principal glial cells expressing membrane-bound potassium channel and predominantly mediating the homeostatic regulation of extracellular K+ produced by neuronal activity in retina. It's well known that Müller cells can be activated in many pathological conditions, but little is known about the change of potassium currents of Müller cells during the progression of retinitis pigmentosa. Herein, the Royal College of Surgeons rats (RCS rat) were employed to investigate some phenotypic and functional changes of Müller cells during retinal degeneration such as the expression of Kir4.

View Article and Find Full Text PDF

Background & Objective: Tumor necrosis factor alpha (TNF-alpha) is an important agent for tumor biotherapy because of its strong antitumor activity, but its clinical application is limited because of its severe fatal systemic toxicity. A new recombinant human (rh) mutein, mutant type (mt) 471rhTNF-alpha, was produced to decrease toxicity while keep antitumor activity of wild type (wt) TNF-alpha. This study was to compare the antitumor activities of mt-471rhTNF-alpha and wt-rhTNF-alpha, and analyze the mechanism of tumor cell apoptosis induced by mt-471rhTNF-alpha.

View Article and Find Full Text PDF

Three plasmid constructs were prepared that express small interfering RNAs (siRNAs) targeted to sequences encoding the ribonucleoprotein member, nucleoprotein (NP) and/or PA, of influenza virus genome. The antiviral properties of siRNAs against the H5N1 strain of influenza virus were studied by evaluating their capacity to silence expression of target genes as well as their effect on influenza virus-induced apoptosis in Madin-Darby canine kidney cells, chicken embryo fibroblast cells, and embryonated chicken eggs in a transient replication model. The results demonstrated that all three siRNAs expressing plasmids efficiently transcribed the short hairpin RNAs and inhibited expression of the NP or PA proteins measured by northern blot and western blot analyses, respectively, in the transfected cells.

View Article and Find Full Text PDF

Aim: To purify preliminary recombinant human TNF-alpha mutein 471 and detect its bioactivity on the basis of the TNF-alpha mutein 471 expressed in prokaryotic express system.

Methods: The expression of recombinant human TNF-alpha mutein 471 in engineering bacteria strains E.coil was induced under the condition of optimal fermentation and expression.

View Article and Find Full Text PDF

Aim: To construct an eukaryotic expression plasmid pcDNA3.1/hIL-18 and express it in mammalian cells.

Methods: cDNA encoding mature hIL-18 was cleavaged by enzyme digestion from mesomeric clone vector pGEM-T/hIL-18 and inserted into an eukaryotic expression plasmid pcDNA3.

View Article and Find Full Text PDF