Publications by authors named "Yao Zhong Xu"

The excited state properties of thionated 5-fluorouridine (2',3',5'-tri-O-acetyl-5-fluoro-4-thiouridine; ta5F4TUrd), synthesized with Lawesson's reagent, have been intensively investigated with nanosecond transient absorption spectroscopy, time-resolved thermal lensing, near-infrared emission, and quantum chemical calculation. The intrinsic triplet lifetime of ta5F4TUrd was determined to be μs in acetonitrile, and the formation quantum yield of the excited triplet state was as large as . The quenching rate constants of the triplet ta5F4TUrd by the dissolved oxygen molecule and by the self-quenching process were found to be nearly equal to the diffusion-controlled rate of acetonitrile.

View Article and Find Full Text PDF

A new thio-2'-deoxyuridine with an extended π-conjugated group was successfully synthesized: 3',5'-di--acetyl-5-phenylethynyl-4-thio-2'-deoxyuridine. The thio-2'-deoxyuridine derivative has a large red-shifted absorption band in the UVA region and also shows fluorescence, a rare photo-property among thionucleobases/thionucleosides. The triplet-triplet absorption spectrum and the rate constants (the intrinsic decay rate constant of the triplet state, the self-quenching rate constant, and the quenching rate constant of the triplet state by an oxygen molecule) of the thio-2'-deoxyuridine were obtained by transient absorption spectroscopy.

View Article and Find Full Text PDF
Article Synopsis
  • taDTGuo is a nucleoside analogue being studied for its potential as a photodynamic therapy (PDT) agent, especially effective for deep-seated tumors.
  • Its two-photon absorption spectrum showed a significant peak at 556 nm and a high absorption cross-section of 26 ± 3 GM, surpassing other nucleobases.
  • The research indicates that taDTGuo's unique chemical structure contributes to its enhanced absorption properties, marking a breakthrough in thionucleoside analogue studies for cancer treatment.
View Article and Find Full Text PDF

Thioguanine is sensitive to UVA light and generates singlet molecular oxygen (1O2*) when exposed to UVA. Three thioguanosine derivatives, 2',3',5'-tri-O-acetyl-6-thioguanosine (ta6TGuo), 2',3',5'-tri-O-acetyl-8-thioguanosine (ta8TGuo), and 2',3',5'-tri-O-acetyl-6,8-dithioguanosine (taDTGuo) were explored photophysically and photochemically. Nanosecond transient absorption and time-resolved near-infrared emission measurements were carried out to investigate the characteristics of their excited triplet states in acetonitrile solution.

View Article and Find Full Text PDF

6-Thioguanine (1a) is considered to be photochemotherapeutic due to its specific characteristics of photosensitivity to UVA light and singlet molecular oxygen generation. To extend its phototherapeutic ability, two related thioguanines, 8-thioguanine (2a) and 6,8-dithioguanine (3a), have been designed and explored. Since the solubility of these thioguanines in dehydrated organic solvents is too poor to study, their triacetyl-protected ribonucleosides, that is, 2',3',5'-tri-O-acetyl-6-thioguanosine (1c), 2',3',5'-tri-O-acetyl-8-thioguanosine (2c) and 2',3',5'-tri-O-acetyl-6,8-dithioguanosine (3c) were prepared and investigated.

View Article and Find Full Text PDF

2',3',5'-Tri- O-acetyl-6,8-dithioguanosine (taDTGuo) is a nucleoside derivative of drug 6-thioguanine and under further development as a potential photochemotherapeutic agent due to its desirable properties of photosensitivity to UVA light and singlet molecular oxygen generation. The photochemical characteristics of taDTGuo under biological conditions (namely in aqueous solution) were intensively investigated by the steady-state absorption and emission, time-resolved near-infrared emission measurements, and quantum chemical calculations. taDTGuo was found to be held in sequential acid dissociation equilibria within pH 3.

View Article and Find Full Text PDF

The effect of S-substitution on the O6 guanine site of a 13-mer DNA duplex containing a G:T mismatch is studied using molecular dynamics. The structure, dynamic evolution and hydration of the S-substituted duplex are compared with those of a normal duplex, a duplex with S-substitution on guanine, but no mismatch and a duplex with just a G:T mismatch. The S-substituted mismatch leads to cell death rather than repair.

View Article and Find Full Text PDF

Systematic NMR characterization of 4-thio-5-furan-pyrimidine nucleosides or 4-thio-5-thiophene-pyrimidine nucleosides (ribonucleosides and 2'-deoxynucleosides) was performed. All proton and carbon signals of 4-thio-5-thiophene-ribouridine and related analogues were unambiguously assigned. The orientations of the base (4-thiouridine or its deoxy analogue) relative to the ring (furan or thiophene) are explored by a NMR approach and further supported by X-ray crystallographic studies.

View Article and Find Full Text PDF

Photochemotherapy, the combination of a photosensitiser and ultraviolet (UV) or visible light, is an effective treatment for skin conditions including cancer. The high mutagenicity and non-selectivity of photochemotherapy regimes warrants the development of alternative approaches. We demonstrate that the thiopyrimidine nucleosides 5-bromo-4-thiodeoxyuridine (SBrdU) and 5-iodo-4-thiodeoxyuridine (SIdU) are incorporated into the DNA of cultured human and mouse cells where they synergistically sensitise killing by low doses of UVA radiation.

View Article and Find Full Text PDF

The field of medicinal chemistry is constantly evolving and it is important for medicinal chemists to develop the skills and knowledge required to succeed and contribute to the advancement of the field. Future Medicinal Chemistry spoke with Simone Pitman (SP), Yao-Zhong Xu (YX), Peter Taylor (PT) and Nick Turner (NT) from The Open University (OU), which offers an MSc in Medicinal Chemistry. In the interview, they discuss the MSc course content, online teaching, the future of medicinal chemistry education and The OU's work towards promoting widening participation.

View Article and Find Full Text PDF

Unambiguous characterization of 5-substituted-4-thiopyrimidine nucleosides (ribonucleosides and 2'-deoxynucleosides) was performed using NMR spectroscopy. Assignments of all proton and carbon signals of 5-bromo-4-thiouridine and related nucleosides were systematically carried out and firmly established by COSY and HMQC techniques. The NMR data of various 4-thiopyrimidine nucleosides are compared, and the key contributing factors discussed.

View Article and Find Full Text PDF

The nucleoside analogue 4-thiothymidine has shown great potential in vitro as a photosensitiser for the photodynamic therapy of numerous cancer cell lines. However, the limited penetrating power of UV-A radiation, to which it responds, raises doubts as to its practical usefulness in clinical applications. We addressed this issue by studying the penetration extent of topical thiothymidine and the antiproliferative effect of its combination with UV-A radiation on ex vivo basal cell carcinoma (BCC) and squamous cell carcinoma (SCC) skin cancer biopsies, and normal skin.

View Article and Find Full Text PDF

Photochemotherapy-in which a photosensitizing drug is combined with ultraviolet or visible radiation-has proven therapeutic effectiveness. Existing approaches have drawbacks, however, and there is a clinical need to develop alternatives offering improved target cell selectivity. DNA substitution by 4-thiothymidine (S(4)TdR) sensitizes cells to killing by ultraviolet A (UVA) radiation.

View Article and Find Full Text PDF

5-Substituted-4-thio-2'-deoxyuridine nucleosides have been chemically synthesized and studied by NMR and UV spectroscopy. The results have been analyzed and discussed in connection with the previous data. The imino proton signal and the carbon signal of the thiocarbonyl group in the 5-substituted-4-thio-2'-deoxyuridines were found to be at much lower field, offering a potential for monitoring these modified bases at the DNA level.

View Article and Find Full Text PDF

The thiopurine, 6-thioguanine (6-TG) is present in the DNA of patients treated with the immunosuppressant and anticancer drugs azathioprine or mercaptopurine. The skin of these patients is selectively sensitive to UVA radiation-which comprises >90% of the UV light in incident sunlight-and they suffer high rates of skin cancer. UVA irradiation of DNA 6-TG produces DNA lesions that may contribute to the development of cancer.

View Article and Find Full Text PDF

The DNA of patients taking the immunosuppressant and anticancer drugs azathioprine or 6-mercaptopurine contains 6-thioguanine (6-TG). The skin of these patients is selectively sensitive to ultraviolet A radiation (UVA) and they suffer an extremely high incidence of sunlight-induced skin cancer with long-term treatment. DNA 6-TG interacts with UVA to generate reactive oxygen species, which oxidize 6-TG to guanine sulphonate (G(SO3)).

View Article and Find Full Text PDF

A general and unambiguous approach has been developed for structural elucidation of modified purine nucleosides using NMR spectroscopy. Systematic assignment of proton and carbon signals of modified nucleosides was firmly established by COSY and the anomerism of the glycosidic linkage of synthetic nucleosides clearly elucidated by NOESY experiments. Characteristic properties of 15N-isotopic labelling at specific positions of nucleosides were also employed for structural studies.

View Article and Find Full Text PDF

Ultraviolet A (UVA) makes up more than 90% of incident terrestrial ultraviolet radiation. Unlike shorter wavelength UVB, which damages DNA directly, UVA is absorbed poorly by DNA and is therefore considered to be less hazardous. Organ transplant patients treated with the immunosuppressant azathioprine frequently develop skin cancer.

View Article and Find Full Text PDF

The thymidine analogue 4-thiothymidine (S(4)TdR) is a photosensitizer for UVA radiation. The UV absorbance spectrum of S(4)TdR and its incorporation into DNA suggests that it might act synergistically with nonlethal doses of UVA to selectively kill hyperproliferative or cancerous skin cells. We show here that nontoxic concentrations of S(4)TdR combine with nonlethal doses of UVA to kill proliferating cultured skin cells.

View Article and Find Full Text PDF
Article Synopsis
  • A 20-minute application of 2-deoxy-D-glucose (2DG) in rat brain slices led to long-term potentiation (LTP)-like effects in the dentate region of the hippocampus, enhancing field excitatory synaptic potentials (fEPSPs).
  • The effects varied between medial perforant path (MPP) and lateral perforant path (LPP) synapses, with MPP showing no early depression and a significant potentiation, while LPP had a sharp depression followed by moderate LTP.
  • 2DG's effects suggest both NMDAR (NMDA receptor) dependent and independent mechanisms are involved in synaptic changes, highlighting its potential impact on synaptic plasticity and cognitive function.
View Article and Find Full Text PDF
Article Synopsis
  • The study investigates how 4-thiothymidine (S4-TdR) behaves when exposed to UVA light, particularly its ability to generate reactive singlet oxygen when combined with molecular oxygen.
  • Spectroscopic measurements revealed a process where S4-TdR transitions from higher energy states (S2) to lower energy states (S1) and then generates a triplet state (T1), which is responsible for its photochemical activity.
  • The research found a high efficiency for the interaction between S1 and T1 states, and confirmed that this process leads to creating singlet oxygen with potential therapeutic applications.
View Article and Find Full Text PDF

The therapeutic effect of the thiopurines, 6-thioguanine (6-TG), 6-mercaptopurine, and its prodrug azathioprine, depends on the incorporation of 6-TG into cellular DNA. Unlike normal DNA bases, 6-TG absorbs UVA radiation, and UVA-mediated photochemical damage of DNA 6-TG has potentially harmful side effects. When free 6-TG is UVA irradiated in solution in the presence of molecular oxygen, reactive oxygen species are generated and 6-TG is oxidized to guanine-6-sulfonate (G(SO3)) and guanine-6-thioguanine in reactions involving singlet oxygen.

View Article and Find Full Text PDF
Article Synopsis
  • Oxidative stress from reactive oxygen species (ROS) is linked to cancer, and certain treatments like azathioprine (Aza) may increase this risk due to its mutagenic effects on DNA.
  • Aza leads to the accumulation of 6-thioguanine (6-TG) in DNA, which, when exposed to ultraviolet A (UVA) light, produces ROS that increases mutagenesis.
  • The combination of 6-TG and UVA demonstrates enhanced mutagenic properties, potentially explaining the higher rates of skin cancer in long-term organ transplant survivors treated with Aza.
View Article and Find Full Text PDF

Site-specific modification of the N1-position of purine was explored at the nucleoside and oligomer levels. 2'-deoxyinosine was converted into an N1-2,4-dinitrophenyl derivative 2 that was readily transformed to the desired N1-substituted 2'-deoxyinosine analogues. This approach was used to develop a post-synthetic method for the modification of the endocyclic N1-position of purine at the oligomer level.

View Article and Find Full Text PDF

Background: Purified human thymine DNA glycosylase (TDG) recognizes a G: T mispair in a CpG sequence context more strongly than in any other, in addition to its inactivity toward 2-aminopurine: T or 2,6 diaminopurine: T pairs. We investigated the multiplicity of TDG to establish a better relationship between in vitro G: T mismatch incision and in vivo repair of a G: T to a G: C pair.

Material/methods: Cell-free extract was prepared from A1235-MR4 human glioma cells grown in tissue culture.

View Article and Find Full Text PDF