Manipulating fluorescence by photo-switched spin-state conversions is an attractive prospect for applications in smart magneto-optical materials and devices. The challenge is how to modulate the energy transfer paths of the singlet excited state by light-induced spin-state conversions. In this work, a spin crossover (SCO) Fe-based fluorophore was embedded into a metal-organic framework (MOF) to tune the energy transfer paths.
View Article and Find Full Text PDFEx situ conservation, an important way to increase the survival and sustainability of endangered species, is widely used in the conservation of endangered orchids. However, long-term ex situ conservation might affect the dominant group of orchid symbiotic fungi, which are crucial for orchid growth and reintroduction. This study investigated the culturable spp.
View Article and Find Full Text PDF: Accumulating evidence illustrated that the reprogramming of the super-enhancers (SEs) landscape could promote the acquisition of metastatic features in pancreatic cancer (PC). Given the anatomy-based TNM staging is limited by the heterogeneous clinical outcomes in treatment, it is of great clinical significance to tailor individual stratification and to develop alternative therapeutic strategies for metastatic PC patients based on SEs. : In our study, ChIP-Seq analysis for H3K27ac was performed in primary pancreatic tumors (PTs) and hepatic metastases (HMs).
View Article and Find Full Text PDFRisk Manag Healthc Policy
June 2023
The most direct approach for characterizing the quantum dynamics of a strongly interacting system is to measure the time evolution of its full many-body state. Despite the conceptual simplicity of this approach, it quickly becomes intractable as the system size grows. An alternate approach is to think of the many-body dynamics as generating noise, which can be measured by the decoherence of a probe qubit.
View Article and Find Full Text PDFObjective: Population ageing, as a hot issue in global development, increases the burden of medical resources in society. This study aims to assess the current spatiotemporal evolution and interaction between population ageing and medical resources in mainland China; evaluate the matching level of medical resources to population ageing; and forecast future trends of ageing, medical resources, and the indicator of ageing-resources (IAR).
Methods: Data on ageing (EPR) and medical resources (NHI, NBHI, and NHTP) were obtained from China Health Statistics Yearbook and China Statistical Yearbook (2011-2020).
PVDF-based polymers with polar covalent bonds are next-generation dielectric materials for electric energy storage applications. Several types of PVDF-based polymers, such as homopolymers, copolymers, terpolymers and tetrapolymers, were synthesized by radical addition reactions, controlled radical polymerizations, chemical modifications or reduction with the monomers of vinylidene fluoride (VDF), tetrafluoroethylene (TFE), trifluoroethylene (TrFE), hexafluoropropylene (HFP) and chlorotrifluoroethylene (CTFE). Owing to rich molecular structures and complicated crystal structures, PVDF-based dielectric polymers can show versatile dielectric polarization properties, including normal ferroelectrics, relaxor ferroelectrics, anti-ferroelectrics and linear dielectrics, which are beneficial for designing polymer films with high capacity and high charge-discharge efficiency for capacitor applications.
View Article and Find Full Text PDFBackground: Liver cancer remains one of the tricky malignancies nowadays. GINS complex subunit 3 (), part of the tetrameric complex, is significantly upregulated in many cancers, including liver hepatocellular carcinoma (LIHC). With the development of liver cancer treatment, immune and molecular targeted therapy gradually becomes a promising treatment.
View Article and Find Full Text PDFApproximately 140 million people worldwide are homozygous carriers of APOE4 (ε4), a strong genetic risk factor for late onset familial and sporadic Alzheimer's disease (AD), 91% of whom will develop AD at earlier age than heterozygous carriers and noncarriers. Susceptibility to AD could be reduced by targeted editing of APOE4, but a technical basis for controlling the off-target effects of base editors is necessary to develop low-risk personalized gene therapies. Here, we first screened eight cytosine base editor variants at four injection stages (from 1- to 8-cell stage), and found that FNLS-YE1 variant in 8-cell embryos achieved the comparable base conversion rate (up to 100%) with the lowest bystander effects.
View Article and Find Full Text PDFAbnormalities of FGFR1 have been reported in multiple malignancies, suggesting FGFR1 as a potential target for precision treatment, but drug resistance remains a formidable obstacle. In this study, we explored whether FGFR1 acted a therapeutic target in human T-cell acute lymphoblastic leukemia (T-ALL) and the molecular mechanisms underlying T-ALL cell resistance to FGFR1 inhibitors. We showed that FGFR1 was significantly upregulated in human T-ALL and inversely correlated with the prognosis of patients.
View Article and Find Full Text PDFCyano-bridged 4d-4f molecular nanomagnets have re-called increasing research interests in molecular magnetism since they offer more possibilities in achieving novel nanomagnets with versatile structures and magnetic interactions. In this work, four β-diketone ligands bearing different substitution N-sites were designed and synthesized, namely 1-(2-pyridyl)-3-(3-pyridyl)-1,3-propanedione (HL ), 1,3-Bis (3-pyridyl)-1,3-propanedione (HL ), 1-(4-pyridyl)-3-(3-pyridyl)-1,3-propanedione (HL ), and 1,3-Bis (4-pyridyl)-1,3-propanedione (HL ), to tune the magnetic relaxation behaviors of cyano-bridged {Dy Mo } systems. By reacting with DyCl ⋅ 6H O and K Mo(CN) ⋅ 2H O, four cyano-bridged complexes, namely {[Dy[Mo (CN) ](HL ) (H O) ]} ⋅ 6H O (1), {[Dy[Mo (CN) ](HL )(H O) (CH OH)]} ⋅ 2CH OH ⋅ 3H O (2), {[Dy[Mo (CN) ](HL )(H O) (CH OH)] ⋅ H O} (3), and {[Dy[Mo (CN) ](HL ) (H O) ]} ⋅ 2H O⋅CH OH (4) were obtained.
View Article and Find Full Text PDFWith the rapid development of industry and agriculture, excessive nitrogen and phosphorus released into natural surface water have caused eutrophication. Applying submerged plants to manage eutrophic water has attracted widespread attention. However, there are limited studies on the effects of different nitrogen and phosphorus in the water environment on submerged plants and their epiphytic biofilm.
View Article and Find Full Text PDFEarly embryonic arrest is one of the causes of assist reproduction technology (ART) failure. We have previously reported that the first sperm-derived genetic factor, mutations, could lead to early embryonic arrest. However, whether there are other male genetic factors associated with early embryonic arrest remains elusive.
View Article and Find Full Text PDFThe transformation of plastic wastes into value-added carbon materials is a promising strategy for the recycling of plastics. Commonly used polyvinyl chloride (PVC) plastics are converted into microporous carbonaceous materials using KOH as an activator via simultaneous carbonization and activation for the first time. The optimized spongy microporous carbon material has a surface area of 2093 m g and a total pore volume of 1.
View Article and Find Full Text PDFPrunus mongolica is an ecologically and economically important xerophytic tree native to Northwest China. Here, we report a high-quality, chromosome-level P. mongolica genome assembly integrating PacBio high-fidelity sequencing and Hi-C technology.
View Article and Find Full Text PDFThe cytochrome P450 superfamily of monooxygenases plays a major role in the evolution and diversification of plant natural products. The function of cytochrome P450s in physiological adaptability, secondary metabolism, and xenobiotic detoxification has been studied extensively in numerous plant species. However, their underlying regulatory mechanism in safflower still remained unclear.
View Article and Find Full Text PDFRecent structural studies show the Rad24-RFC loads the 9-1-1 checkpoint clamp onto a recessed 5' end by binding the 5' DNA on Rad24 at an external surface site and threading the 3' ssDNA into the well-established internal chamber and into 9-1-1. We find here that Rad24-RFC loads 9-1-1 onto DNA gaps in preference to a recessed 5' DNA end, thus presumably leaving 9-1-1 on a 3' ss/ds DNA after Rad24-RFC ejects from the 5' gap end and may explain reports of 9-1-1 directly functioning in DNA repair with various TLS polymerases, in addition to signaling the ATR kinase. To gain a deeper understanding of 9-1-1 loading at gaps we report high-resolution structures of Rad24-RFC during loading of 9-1-1 onto 10-nt and 5-nt gapped DNAs.
View Article and Find Full Text PDFThe role of IBA in regulating the recovery of liver cancer was investigated using a rat model of liver cancer and an intraoperative blood return model (IBA). SD rats were used to construct the IBA model. Kupffer cells were isolated from liver cancer tissues, and their biological characteristics were analyzed by flow cytometry.
View Article and Find Full Text PDFUSP7, a ubiquitin-specific peptidase (USP), plays an important role in many cellular processes through its catalytic deubiquitination of various substrates. However, its nuclear function that shapes the transcriptional network in mouse embryonic stem cells (mESCs) remains poorly understood. We report that USP7 maintains mESC identity through both catalytic activity-dependent and -independent repression of lineage differentiation genes.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
September 2023
Rechargeable lithium batteries are one of the most appropriate energy storage systems in our electrified society, as virtually all portable electronic devices and electric vehicles today rely on the chemical energy stored in them. However, sub-zero Celsius operation, especially below -20 °C, remains a huge challenge for lithium batteries and greatly limits their application in extreme environments. Slow Li diffusion and charge transfer kinetics have been identified as two main origins of the poor performance of RLBs under low-temperature conditions, both strongly associated with the liquid electrolyte that governs bulk and interfacial ion transport.
View Article and Find Full Text PDFColossal and anisotropic thermal expansion is a key function for microscale or nanoscale actuators in material science. Herein, we present a hexanuclear compound of [(Tp*)Fe (CN) ] [Fe (Ppmp)] ⋅2 CH OH (1, Tp*=hydrotris(3,5-dimethyl-pyrazol-1-yl)borate and Ppmp=2-[3-(2'-pyridyl)pyrazol-1-ylmethyl]pyridine), which has a rhombic core structure abbreviated as {Fe Fe }. Magnetic susceptibility measurements and single-crystal X-ray diffraction analyses revealed that 1 underwent thermally-induced spin transition with the thermal hysteresis.
View Article and Find Full Text PDFLysine malonylation (Kmal) is an evolutionarily conserved post-translational modification (PTM) that has been demonstrated to be involved in cellular and organismal metabolism. However, the role that Kmal plays in response to drought stress of the terrestrial cyanobacteria is still unknown. In this study, we performed the first proteomic analysis of Kmal in under different drought stresses using LC-MS/MS.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
October 2023
Viscosity is an extremely important property for ion transport and wettability of electrolytes. Easy access to viscosity values and a deep understanding of this property remain challenging yet critical to evaluating the electrolyte performance and tailoring electrolyte recipes with targeted properties. We proposed a screened overlapping method to efficiently compute the viscosity of lithium battery electrolytes by molecular dynamics simulations.
View Article and Find Full Text PDF