As the demand for the neuromorphic vision system in image recognition experiences rapid growth, it is imperative to develop advanced architectures capable of processing perceived data proximal to sensory terminals. This approach aims to reduce data movement between sensory and computing units, minimizing the need for data transfer and conversion at the sensor-processor interface. Here, an optical neuromorphic synaptic (ONS) device is demonstrated by homogeneously integrating optical-sensing and synaptic functionalities into a unified material platform, constructed exclusively by all-inorganic perovskite CsPbBr quantum dots (QDs).
View Article and Find Full Text PDFTelomere length maintenance is essential for cellular immortalization and tumorigenesis. 5% - 10% of human cancers rely on a recombination-based mechanism termed alternative lengthening of telomeres (ALT) to sustain their replicative immortality, yet there are currently no targeted therapies. Through CRISPR/Cas9-based genetic screens in an ALT-immortalized isogenic cellular model, here we identify histone lysine demethylase KDM2A as a molecular vulnerability selectively for cells contingent on ALT-dependent telomere maintenance.
View Article and Find Full Text PDFTelomere length maintenance is essential for cellular immortalization and tumorigenesis. 5% - 10% of human cancers rely on a recombination-based mechanism termed alternative lengthening of telomeres (ALT) to sustain their replicative immortality, yet there are currently no targeted therapies. Through CRISPR/Cas9-based genetic screens in an ALT-immortalized isogenic cellular model, here we identify histone lysine demethylase KDM2A as a molecular vulnerability selectively for cells contingent on ALT-dependent telomere maintenance.
View Article and Find Full Text PDFThe exotic electronic properties of topological semimetals (TSs) have opened new pathways for innovative photonic and optoelectronic devices, especially in the highly pursuit terahertz (THz) band. However, in most cases Dirac fermions lay far above or below the Fermi level, thus hindering their successful exploitation for the low-energy photonics. Here, low-energy type-II Dirac fermions in kitkaite (NiTeSe) for ultrasensitive THz detection through metal-topological semimetal-metal heterostructures are exploited.
View Article and Find Full Text PDFBackground: A recent sham-controlled clinical study has shown that low-intensity pulsed ultrasound twice per week can safely and effectively treat patients with mild-to-moderate erectile dysfunction (ED). However, large-scale clinical trials are needed to verify its efficacy and safety and determine a reasonable treatment interval.
Aim: To study whether low-intensity pulsed ultrasound therapy thrice per week is non-inferior to twice per week in patients with mild-to-moderate ED.
The corpus cavernosum is the most important structure for penile erection, and its dysfunction causes many physiological and psychological problems. However, its cellular heterogeneity and signalling networks at the molecular level are poorly understood because of limited access to samples. Here, we profile 64,993 human cavernosal single-cell transcriptomes from three males with normal erection and five organic erectile dysfunction patients.
View Article and Find Full Text PDFDespite the considerable effort, fast and highly sensitive photodetection is not widely available at the low-photon-energy range (~meV) of the electromagnetic spectrum, owing to the challenging light funneling into small active areas with efficient conversion into an electrical signal. Here, we provide an alternative strategy by efficiently integrating and manipulating at the nanoscale the optoelectronic properties of topological Dirac semimetal PtSe and its van der Waals heterostructures. Explicitly, we realize strong plasmonic antenna coupling to semimetal states near the skin-depth regime (λ/10), featuring colossal photoresponse by in-plane symmetry breaking.
View Article and Find Full Text PDFIn Alzheimer's disease (AD), neurodegenerative signals such as amyloid-beta (Aβ) and the precursors of neurotrophins, outbalance neurotrophic signals, causing synaptic dysfunction and neurodegeneration. The neurotrophin receptor p75 (p75NTR) is a receptor of Aβ and mediates Aβ-induced neurodegenerative signals. The shedding of its ectodomain from the cell surface is physiologically regulated; however, the function of the diffusible p75NTR ectodomain (p75ECD) after shedding remains largely not known.
View Article and Find Full Text PDFAmyloid-β (Aβ) peptide-binding alcohol dehydrogenase (ABAD), an enzyme present in neuronal mitochondria, exacerbates Aβ-induced cell stress. The interaction of ABAD with Aβ exacerbates Aβ-induced mitochondrial and neuronal dysfunction. Here, we show that inhibition of the ABAD-Aβ interaction, using a decoy peptide (DP) in vitro and in vivo, protects against aberrant mitochondrial and neuronal function and improves spatial learning/memory.
View Article and Find Full Text PDFOne of the critical issues in the generation of a protein microarray lies in the choice of immobilization strategies, which ensure proteins are adhered to the glass surface while properly retaining their native biological activities. We previously developed intein-mediated strategies for protein biotinylation and site-specific protein microarray generation. Herein, we report new findings of these strategies, which improve the biotinylation efficiency of proteins by up to 10-folds.
View Article and Find Full Text PDFJ Pain Symptom Manage
August 2004
This study prospectively assessed dyspnea and related bio-psycho-social-spiritual factors--including severity, cause, psychological distress, and fear of death--that were possibly related to dyspnea in 125 terminal cancer patients at admission and two days before their death. At admission, 74 patients had dyspnea, which improved but later worsened. Causes included cachexia, anemia, pleural effusion, and lymphangitis.
View Article and Find Full Text PDFThe postgenome era has led to a new frontier of proteomics that requires the development of protein microarray, which enables us to unravel the biological function of proteins in a massively parallel fashion. Several ways of immobilizing proteins onto surfaces have been reported, but many of these attachments are unspecific, resulting in the unfavorable orientation of the immobilized proteins. His6 tag has been used to site-specifically immobilize proteins onto nickel-coated slides, which presumably oriented proteins uniformly on the surface of the slide.
View Article and Find Full Text PDFWe present intein-mediated approaches for efficient biotinylation of proteins site-specifically. The reactive C-terminal thioester generated from intein-assisted protein splicing (either in vitro or in live cells) served as an attractive and exclusive site for attaching cysteine-containing biotin. Using these novel biotinylation strategies, we were able to efficiently biotinylate many proteins from different biological sources in a potentially high-throughput, high-content fashion.
View Article and Find Full Text PDFLatest microarray-based technologies, including small molecule-, peptide-, protein- and cell-based arrays, and their applications in the field of proteomics are reviewed.
View Article and Find Full Text PDFWe report here the first example using an intein-mediated expression system to generate biotinylated proteins suitable for immobilization onto avidin-functionalized glass slides. With this novel array, proteins are site-specifically immobilized on the glass surface and are able to retain their native activity. The advantage of the avidin/biotin linkage over his-tag/Ni-NTA strategies for protein immobilization is highlighted by its ability to withstand a variety of chemical conditions, which makes this new protein array compatible with most biological assays.
View Article and Find Full Text PDF