Publications by authors named "Yao Guang Liu"

The emergence of herbicide-resistant weeds in crop fields and the extensive use of herbicides have led to a decrease in rice (Oryza sativa) yields and an increase in production costs. To address these challenges, researchers have focused on the discovery of new germplasm resources with herbicide resistance. The most promising candidate genes have been functionally studied and applied in rice breeding.

View Article and Find Full Text PDF

Dual base editors (DBEs) enable simultaneous A-to-G and C-to-T conversions, expanding mutation types. However, low editing efficiency and narrow targeting range limit the widespread use of DBEs in plants. The single-strand DNA binding domain of RAD51 DBD can be fused to base editors to improve their editing efficiency.

View Article and Find Full Text PDF

A plethora of CRISPR effectors, such as Cas3, Cas9, and Cas12a, are commonly employed as gene editing tools. Among these, Cas12 effectors developed based on Class II type V proteins exhibit distinct characteristics compared to Class II type VI and type II effectors, such as their ability to generate non-allelic DNA double-strand breaks, their compact structures, and the presence of a single RuvC-like nuclease domain. Capitalizing on these advantages, Cas12 family proteins have been increasingly explored and utilized in recent years.

View Article and Find Full Text PDF

Plants must accurately integrate external environmental signals with their own development to initiate flowering at the appropriate time for reproductive success. Photoperiod and temperature are key external signals that determine flowering time; both are cyclical and periodic, and they are closely related. In this review, we describe photoperiod-sensitive genes that simultaneously respond to temperature signals in rice (Oryza sativa).

View Article and Find Full Text PDF

Rice (Oryza sativa L.) is a short-day plant whose heading date is largely determined by photoperiod sensitivity (PS). Many parental lines used in hybrid rice breeding have weak PS, but their F progenies have strong PS and exhibit an undesirable transgressive late-maturing phenotype.

View Article and Find Full Text PDF

Plant metabolism and development are a reflection of the orderly expression of genetic information intertwined with the environment interactions. Genome editing is the cornerstone for scientists to modify endogenous genes or introduce exogenous functional genes and metabolic pathways, holding immense potential applications in molecular breeding and biosynthesis. Over the course of nearly a decade of development, genome editing has advanced significantly beyond the simple cutting of double-stranded DNA, now enabling precise base and fragment replacements, regulation of gene expression and translation, as well as epigenetic modifications.

View Article and Find Full Text PDF

Cytoplasmic male sterility (CMS) lines are important for breeding hybrid crops, and utilization of CMS lines requires strong fertility restorer (Rf) genes. Rf4, a major Rf for Wild-Abortive CMS (CMS-WA), has been cloned in rice. However, the Rf4 evolution and formation of CMS-WA/Rf system remain elusive.

View Article and Find Full Text PDF

We clarify the influence of the genotypes of the heading date genes Hd1, Ghd7, DTH8, and PRR37 and their combinations on yield-related traits and the functional differences between different haplotypes. Heading date is a key agronomic trait in rice (Oryza sativa L.) that determines yield and adaptability to different latitudes.

View Article and Find Full Text PDF

Some progress has been made in understanding the pathways related to rice heading, but their applications to breeding rice varieties adapted to grow in low-latitude areas (" to ") are limited. We edited eight adaptation-related genes via a lab-established CRISPR/Cas9 system in a variety, Shennong265 (SN265). All T plants and their progeny bearing random mutation permutations were planted in southern China and screened for changes in heading date.

View Article and Find Full Text PDF

Rare earth elements (REEs) are critical for numerous modern technologies, and demand is increasing globally; however, production steps are resource-intensive and environmentally damaging. Some plant species are able to hyperaccumulate REEs, and understanding the biology behind this phenomenon could play a pivotal role in developing more environmentally friendly REE recovery technologies. Here, we identified a REE transporter NRAMP REE Transporter 1 (NREET1) from the REE hyperaccumulator fern .

View Article and Find Full Text PDF

We identified and fine-mapped S58, a selfish genetic locus from Asian rice that confers hybrid male sterility in crosses between Asian and African cultivated rice, and found a natural neutral allele in Asian rice lines that will be useful for overcoming S58-mediated hybrid sterility. Hybrids between Asian cultivated rice (Oryza sativa L.) and African cultivated rice (Oryza glaberrima Steud) display severe hybrid sterility (HS), hindering the utilization of strong heterosis in hybrids between these species.

View Article and Find Full Text PDF

CRISPR-dependent base editors enable direct nucleotide conversion without the introduction of double-strand DNA break or donor DNA template, thus expanding the CRISPR toolbox for genetic manipulation. However, designing guide RNAs (gRNAs) for base editors to enable gene correction or inactivation is more complicated than using the CRISPR system for gene disruption. Here, we present a user-friendly web tool named BEtarget dedicated to the design of gRNA for base editing.

View Article and Find Full Text PDF

Golden2 (G2), a member of the GARP transcription factor superfamily, regulates several biological processes and phytohormone signaling pathways in plants. In this study, we used a rice codon-optimized maize G2 gene (rZmG2) to improve the regeneration efficiency of rice and maize calli for genetic transformation. We isolated a promoter driving strong and callus-specific expression from rice to drive rZmG2 transcription from a transgene after transformation of two indica and two japonica rice cultivars.

View Article and Find Full Text PDF

CRISPR/Cas9-based cytosine base editors (CBEs) and adenine base editors (ABEs) can efficiently mediate C-to-T/G-to-A and A-to-G/T-to-C substitutions, respectively; however, achieving base transversions (C-to-G/C-to-A and A-to-T/A-to-C) is challenging and has been rarely studied in plants. Here, we constructed new plant C-to-G base editors (CGBEs) and new A-to-Y (T/C) base editors and explored their base editing characteristics in rice. First, we fused the highly active cytidine deaminase evoFENRY and the PAM-relaxed Cas9-nickase variant Cas9n-NG with rice and human uracil DNA N-glycosylase (rUNG and hUNG), respectively, to construct CGBE-rUNG and CGBE-hUNG vector tools.

View Article and Find Full Text PDF

Plant height is an important agronomic trait for lodging resistance and yield. Here, we report a new plant-height-related gene, OsUBR7 in rice (Oryza sativa L.); knockout of OsUBR7 caused fewer cells in internodes, resulting in a semi-dwarf phenotype.

View Article and Find Full Text PDF

Functional genomics, synthetic biology and metabolic engineering require efficient tools to deliver long DNA fragments or multiple gene constructs. Although numerous DNA assembly methods exist, most are complicated, time-consuming and expensive. Here, we developed a simple and flexible strategy, unique nucleotide sequence-guided nicking endonuclease (UNiE)-mediated DNA assembly (UNiEDA), for efficient cloning of long DNAs and multigene stacking.

View Article and Find Full Text PDF

Plant expression platforms are low-cost, scalable, safe, and environmentally friendly systems for the production of recombinant proteins and bioactive metabolites. Rice (Oryza sativa L.) endosperm is an ideal bioreactor for the production and storage of high-value active substances, including pharmaceutical proteins, oral vaccines, vitamins, and nutraceuticals such as flavonoids and carotenoids.

View Article and Find Full Text PDF

In plants, lipid transfer proteins (LTPs) transport pollen wall constituents from the tapetum to the exine, a process essential for pollen wall development. However, the functional cooperation of different LTPs in pollen wall development is not well understood. In this study, we have identified and characterized a grass-specific LTP gene, OsLTP47, an important regulator of pollen wall formation in rice (Oryza sativa).

View Article and Find Full Text PDF

Heading date determines the seasonal and regional adaptation of rice (Oryza sativa L.) varieties and is mainly controlled by photoperiod sensitivity (PS). The core heading date genes Hd1, Ghd7, DTH8, and PRR37 act synergistically in regulating the PS.

View Article and Find Full Text PDF

Fluorescent tagging protein localization (FTPL) and bimolecular fluorescence complementation (BiFC) are popular tools for in vivo analyses of the subcellular localizations of proteins and protein-protein interactions in plant cells. The efficiency of fluorescent fusion protein (FFP) expression analyses is typically impaired when the FFP genes are co-transformed on separate plasmids compared to when all are cloned and transformed in a single vector. Functional genomics applications using FFPs such as a gene family studies also often require the generation of multiple plasmids.

View Article and Find Full Text PDF

In order to separate transformed cells from non-transformed cells, antibiotic selectable marker genes are usually utilized in genetic transformation. After obtaining transgenic plants, it is often necessary to remove the marker gene from the plant genome in order to avoid regulatory issues. However, many marker-free systems are time-consuming and labor-intensive.

View Article and Find Full Text PDF