Proc Natl Acad Sci U S A
December 2024
Circadian clocks respond to temperature changes over the calendar year, allowing organisms to adjust their daily biological rhythms to optimize health and fitness. In , seasonal adaptations are regulated by temperature-sensitive alternative splicing (AS) of () and () genes that encode key transcriptional repressors of clock gene expression. Although () gene encodes the critical activator of circadian gene expression, AS of its transcripts and its potential role in temperature regulation of clock function have not been explored.
View Article and Find Full Text PDFCircadian clocks respond to temperature changes over the calendar year, allowing organisms to adjust their daily biological rhythms to optimize health and fitness. In , seasonal adaptations and temperature compensation are regulated by temperature-sensitive alternative splicing (AS) of () and () genes that encode key transcriptional repressors of clock gene expression. Although () gene encodes the critical activator of clock gene expression, AS of its transcripts and its potential role in temperature regulation of clock function have not been explored.
View Article and Find Full Text PDFO-linked β-N-acetylglucosamine (O-GlcNAcylation) is a dynamic post-translational modification that regulates thousands of proteins and almost all cellular processes. Aberrant O-GlcNAcylation has been associated with numerous diseases, including cancer, neurodegenerative diseases, cardiovascular diseases, and type 2 diabetes. O-GlcNAcylation is highly nutrient-sensitive since it is dependent on UDP-GlcNAc, the end product of the hexosamine biosynthetic pathway (HBP).
View Article and Find Full Text PDFBackground: Vibrational signal plays a crucial role in courtship communication in many insects. However, it remains unclear whether insect vibrational signals exhibit daily rhythmicity in response to changes in environmental cues.
Results: In this study, we observed daily rhythms of both female vibrational signals (FVS) and male vibrational signals (MVS) in the brown planthopper (BPH), Nilaparvata lugens (Stål), one of the most notorious rice pests across Asia.
Insect mitochondrial genomes (mitogenome) generally present a typical gene order, which is considered as the ancestral arrangement. All sequenced mitogenomes in the Thysanoptera display high levels of gene rearrangement. Due to limited number of thrips mitogenomes sequenced, how gene rearrangement may be shaped by evolution remain unclear.
View Article and Find Full Text PDFCircadian clock and chromatin-remodeling complexes are tightly intertwined systems that regulate rhythmic gene expression. The circadian clock promotes rhythmic expression, timely recruitment, and/or activation of chromatin remodelers, while chromatin remodelers regulate accessibility of clock transcription factors to the DNA to influence expression of clock genes. We previously reported that the BRAHMA (BRM) chromatin-remodeling complex promotes the repression of circadian gene expression in Drosophila.
View Article and Find Full Text PDFAmbient temperature varies constantly. However, the period of circadian pacemakers is remarkably stable over a wide-range of ecologically- and physiologically-relevant temperatures, even though the kinetics of most biochemical reactions accelerates as temperature rises. This thermal buffering phenomenon, called temperature compensation, is a critical feature of circadian rhythms, but how it is achieved remains elusive.
View Article and Find Full Text PDFTIMELESS (TIM) was first identified as a molecular cog in the Drosophila circadian clock. Almost three decades of investigations have resulted in an insightful model describing the critical role of Drosophila TIM (dTIM) in circadian timekeeping in insects, including its function in mediating light entrainment and temperature compensation of the molecular clock. Furthermore, exciting discoveries on its sequence polymorphism and thermosensitive alternative RNA splicing have also established its role in regulating seasonal biology.
View Article and Find Full Text PDFCircadian clocks orchestrate daily rhythms in organismal physiology and behavior to promote optimal performance and fitness. In Drosophila, key pacemaker proteins PERIOD (PER) and TIMELESS (TIM) are progressively phosphorylated to perform phase-specific functions. Whereas PER phosphorylation has been extensively studied, systematic analysis of site-specific TIM phosphorylation is lacking.
View Article and Find Full Text PDF