Publications by authors named "Yao Akpamagbo"

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has been fixed in the paper.

View Article and Find Full Text PDF

Background: HTLV-1 infects over 20 million people worldwide and causes a progressive neuroinflammatory disorder in a subset of infected individuals called HTLV-1 associated myelopathy/tropical spastic paraparesis (HAM/TSP). The detection of HTLV-1 specific T cells in the cerebrospinal fluid (CSF) suggests this disease is immunopathologically mediated and that it may be driven by viral antigens. Exosomes are microvesicles originating from the endosomal compartment that are shed into the extracellular space by various cell types.

View Article and Find Full Text PDF

To date, the most effective treatment of HIV-1 is a combination antiretroviral therapy (cART), which reduces viral replication and reverses pathology. We investigated the effect of cART (RT and protease inhibitors) on the content of extracellular vesicles (EVs) released from HIV-1-infected cells. We have previously shown that EVs contain non-coding HIV-1 RNA, which can elicit responses in recipient cells.

View Article and Find Full Text PDF

Background: HIV-1 can be preserved in long-lived resting CD4+ T- and myeloid cells, forming a viral reservoir in tissues of the infected individuals. Infected patients primarily receive cART, which, to date, is the most efficient treatment against HIV/AIDS. However, the major problem in the eradication of HIV-1 from patients is the lack of therapeutic approaches to recognize the latent HIV-1 provirus and to eliminate latently infected cells.

View Article and Find Full Text PDF

HIV-1 infection causes AIDS, infecting millions worldwide. The virus can persist in a state of chronic infection due to its ability to become latent. We have previously shown a link between HIV-1 infection and exosome production.

View Article and Find Full Text PDF

Exosomes are small vesicles, approximately 30-100 nm in diameter, that transport various cargos, such as proteins and nucleic acids, between cells. It has been previously shown that exosomes can also transport viral proteins, such as the HTLV protein Tax, and viral RNAs, potentially contributing to disease pathogenesis. Therefore, it is important to understand their impact on recipient cells.

View Article and Find Full Text PDF

Ebola virus (EBOV) is an enveloped, ssRNA virus from the family capable of causing severe hemorrhagic fever with up to 80-90% mortality rates. The most recent outbreak of EBOV in West Africa starting in 2014 resulted in over 11,300 deaths; however, long-lasting persistence and recurrence in survivors has been documented, potentially leading to further transmission of the virus. We have previously shown that exosomes from cells infected with HIV-1, HTLV-1 and Rift Valley Fever virus are able to transfer viral proteins and non-coding RNAs to naïve recipient cells, resulting in an altered cellular activity.

View Article and Find Full Text PDF

Rift Valley Fever Virus (RVFV) is a RNA virus that belongs to the genus Phlebovirus, family Bunyaviridae. It infects humans and livestock and causes Rift Valley fever. RVFV is considered an agricultural pathogen by the USDA, as it can cause up to 100% abortion in cattle and extensive death of newborns.

View Article and Find Full Text PDF