Publications by authors named "Yanzhu Guo"

Lignin is a natural phenolic polymer characterized with renewable, sustainable and biocompatible, but yet remain underutilized. In the post-pandemic era, people are conventionally reusing mask but without any disinfections to prevent infection of virus in public places, which could lead to accumulation of bacteria and secondary infections. The development of antibacterial mask from lignin would simultaneously address the hygiene issues of used mask due to microbe accumulation and provide novel approach for lignin valorization.

View Article and Find Full Text PDF

Replacing fossil resource with biomass is one of the promising approaches to reduce our carbon footprint. Lignin is one of the three major components of lignocellulosic biomass, accounting for 10-35 wt% of dried weight of the biomass. Hydrogenolytic depolymerization of lignin is attracting increasing attention because of its capacity of utilizing lignin in its uncondensed form and compatibility with the biomass fractionation processes.

View Article and Find Full Text PDF

Converting lignin into specific aromatic chemicals for utilization through depolymerization of lignin is an effective way to achieve high-value applications. There are many depolymerization methods that can do this, but there are problems such as harsh reaction conditions, low depolymerization efficiency and uncontrollable target products that need to be solved. This study reports a novel system for the oxidative depolymerization of alkali lignin using Fe- and Mn- modified TS-1 as a catalyst to assist in the highly selective production of vanillin.

View Article and Find Full Text PDF

As the second most abundant biopolymer, lignin remains underutilized in various industrial applications. Various forms of lignin generated from different methods affect its physical and chemical properties to a certain extent. To promote the broader commercial utilization of currently available industrial lignins, lignin sulfonate (SL), kraft lignin (KL), and organosolv lignin (OL) are utilized to partially replace phenol in the synthesis of phenol formaldehyde (PF) adhesives.

View Article and Find Full Text PDF

In this work, novel lignin-based nanoparticles (LβNPs) with high acidic tolerance were successfully prepared via electrostatic interaction between β-alanine and lignin nanoparticles. The effects of the mass ratio of lignin nanoparticles to β-alanine and pH value on the morphology and particle sizes of LβNPs were investigated with the aim of obtaining the ideal nanoparticles. The optimized LβNPs were spherical in shape with an average particle size of 41.

View Article and Find Full Text PDF
Article Synopsis
  • The study addresses the weak antimicrobial activity of industrial lignin and explores ways to enhance its effectiveness through modifications.
  • Researchers synthesized aminoalkyl-modified lignins, particularly focusing on aminobutyl lignin, which demonstrated superior antimicrobial properties compared to copper ions.
  • The mechanism of action for aminobutyl lignin involves damaging cell membranes, leading to cell death, offering a promising approach to valorize lignin in biological applications.
View Article and Find Full Text PDF

With the growing global population and rapid economic development, the demand for energy and raw materials is increasing, and the supply of fossil resources as the main source of energy and raw materials has reached a critical juncture. However, our overexploitation and overconsumption of fossil resources have led to serious problems, including environmental pollution, climate change, and ecosystem destruction. In the face of these challenges, we must recognize the negative impacts of the shortage of fossil resources and actively seek sustainable alternative sources of energy and resources to protect our environment and sustainable development in the future.

View Article and Find Full Text PDF

In this study, yellow emissive lignin-based carbon dots (Y-CDs) were successfully prepared through a synergistic approach to adjust its surface and carbon core states. The lignin was initially effectively oxidized and carboxymethylated to impart abundant -COOH onto the precursor, which eventually adjusts the surface state of the CDs. Subsequently, α-naphthol was employed during the solvothermal treatment of lignin with the aim of elevating the sp domain content in the CDs and, thus, adjusting its carbon core state.

View Article and Find Full Text PDF

Lignin is a natural aromatic polymer of -hydroxyphenylpropanoids with various biological activities. Noticeably, plants have made use of lignin as biocides to defend themselves from pathogen microbial invasions. Thus, the use of isolated lignin as environmentally benign antimicrobial is believed to be a promising high value approach for lignin valorization.

View Article and Find Full Text PDF

The poor water solubility, large particle size, and low accessibility of cellulose, the most abundant bioresource, have restricted its generalization to carbon dots (CDs). Herein, nitrogen and sulfur co-doped fluorescent carbon dots (N, S-CDs) were hydrothermally synthesized using cellulose nanocrystals (CNC) as a carbon precursor, exhibiting a small particle size and excellent aqueous dispersion. Thiourea was selected as a nitrogen and sulfur dopant to introduce abundant fluorescent functional groups into N, S-CDs.

View Article and Find Full Text PDF

The search for renewable energy sources to replace fossil fuel has made lignin a promising carbon-containing resource. In this paper, LaNiO perovskite catalyst supported by mesoporous carrier with specific pore structure was prepared by the pore filling of MCM-41 with citrate complex precursors of nickel and lanthanum. Then the catalysts applied to maize straw lignin depolymerization.

View Article and Find Full Text PDF

An in-situ compatibilized starch (St) and polyacrylonitrile (PAN) composite spinning solution was designed by preparing starch-graft-polyacrylonitrile (St-g-PAN) through graft copolymerizing acrylonitrile from soluble starch and using ammonium cerium nitrate (CAN) as initiator. As dimethyl sulfoxide (DMSO) was used as the solvent, St/St-g-PAN/PAN/DMSO spinning solution was prepared and St/St-g-PAN/PAN composite fibers were obtained by dry-wet spinning technique. The effects of air gap, coagulation bath, hot drawing and stretching, and thermal-setting process were studied in detail.

View Article and Find Full Text PDF

A convenient and sensitive reversible-fluorescence sensing platform for accurate monitoring of high-valence metal ions is still very challenging. As a green kind of fluorescent carbon nanomaterials, carbon dots (CDs) have captured considerable attention because of the stable fluorescence property and low cost. Herein, we fabricated a type of nitrogen-functionalized carbon dots (N-CDs) from CMC as a fluorescent reversible sensing platform for detecting various high-valence metal ions.

View Article and Find Full Text PDF

Lignin is exceptionally abundant in nature and is regarded as a renewable, cheap, and environmentally friendly resource for the manufacture of aromatic chemicals. A novel NiP/P-N-C catalyst for catalytic hydrogenolysis of lignin was synthesized. The catalysts were prepared by simple impregnation and carbonization using the nonprecious metal Ni taken up by the cell wall of Chlorella in Ni(NO) solution.

View Article and Find Full Text PDF

Lignin-first depolymerization of lignocellulosic biomass into aromatics is of great significance to sustainable biorefinery. However, it remains a challenge, owing to the variance between lignin sources and structures. In this study, ruthenium supported on carbon nanotubes (Ru/CNT) exhibits efficient catalytic activity toward lignin hydrogenolysis to exclusively afford monophenols in high yields.

View Article and Find Full Text PDF

The capture of radioactive iodine has recently attracted much attention due to the release of radioactive iodine during nuclear waste disposal and disasters. Exploring highly efficient, sustainable, and eco-friendly materials for capturing radioactive iodine has great significance in developing safe nuclear energy. We reported highly efficient, natural, lignin-based, electrospun nanofibers (LNFs) for reversible radioiodine capture.

View Article and Find Full Text PDF

The molecular weight is one of the most important factors influencing the utilization of industrial lignin obtained from chemical pulping process. In this paper, a facile operative green solvent system was successfully developed for molecular weight-controllable fractionation of industrial alkali lignin (IAL) at room temperature. The results showed that through adjusting the ratio of water, ethanol and γ-Valerolactone (GVL), the industrial lignin was fractionated into six levels with molecular weight stepwise controllable from low to high.

View Article and Find Full Text PDF

Enzymatic hydrolysis is a method to generate biofuel from biomass, and autohydrolysis is a popular method to pretreat biomass prior to enzymatic hydrolysis. The primary aim of the present study was to determine the role of lignin produced in the autohydrolysis process on the enzymatic hydrolysis of biomass. The HSQC and P NMR analyses confirmed that β-O-4 of lignin was reduced, while β-5, β-β, and S/G-ratio of lignin were increased with intensifying the hydrolysis intensity.

View Article and Find Full Text PDF

Microbiota quorum sensing (QS) induced by 3O-C6-HSL (N-(β-ketocaproyl)-DL-homoserine lactone) inhibited the calcification of anaerobic granular sludge (AnGS), and the mechanism of promoting the activity recovery of calcified AnGS was studied in this paper. Through research, it was speculated that 3O-C6-HSL acted on calcified AnGS residual microorganisms to trigger QS. It enriched many functional microorganisms.

View Article and Find Full Text PDF

Sodium alginate (SA) blending with quaternary ammonium chitosan (QAC) polysaccharide polyelectrolyte complex (PEC) system was chosen to research the binary blending of anionic and cationic polyelectrolytes in detail and to fabricate SA/QAC composite fibers. The potential charge and the rheology of the PEC solution were characterized through Zeta Laser Particle Size Analyzer and DV-C Rotary Rheometer, the structure and properties of the composite fiber were examined by FT-IR, XRD, SEM, EDS, and YG004 single fiber strength meter. The results showed that as the mass ratio of SA to QAC increased from 0/1 to 10/1, the state of the binary solution in water changed from transparent uniform solution to turbid solution with flocculent precipitate, then back to uniform solution, accompanied by the electrical potential change.

View Article and Find Full Text PDF

Development of lignin-derived carbon adsorbents with ultrahigh phosphate adsorption activity and rapid adsorption kinetics is of great importance, yet limited success has been achieved. Herein, we develop a CeO functionalized N-doped lignin-derived biochar (Ce@NLC) via a cooperative modification strategy for effective and fast phosphate capture. The novel modification strategy not only contributes greatly to the loading of well-dispersed CeO nanoparticles with a smaller size, but also significantly increases the relative concentration of Ce(III) species on Ce@NLC.

View Article and Find Full Text PDF

As a new product of high-value utilization of lignin, lignin micro/nano particles (LMNPs) have attracted the attention of researchers due to their non-toxicity, corrosion-resistance, UV resistance, and other excellent characteristics and potential application value. This article outlined the main preparation methods of LMNPs at the current stage, summarized and compared them from three perspectives of preparation technology, final product state and product composition. Subsequently, based on the different focuses of the properties of LMNPs, their application research progress as fillers, UV blockers, drug delivery carriers, among others, were introduced.

View Article and Find Full Text PDF

Design of carbon-based adsorbents derived from industrial lignin with superior phosphate adsorption performance is of great significance, yet limited researches have been reported. Here, we report a MgO-functionalized lignin-based bio-charcoal (MFLC) as an efficient adsorbent for phosphate removal. The obtained MgO nanoparticles were dispersed homogeneously on MFLC with particle size of 50-100 nm and higher loading content (28.

View Article and Find Full Text PDF

To achieve a rapid and facile quantitative evaluation of Sudan I illegally added in ketchup, fluorescent carbon quantum dots with excellent stability in acidic environments are required as the actual pH value of ketchup is close to 4.0. In this paper, we developed a green approach to prepare sulfur-doped carbon quantum dots (SCQDs) via hydrothermal treatment of lignin, isolated from pre-hydrolysis liquor, in sulfuric acid solution.

View Article and Find Full Text PDF

As one type of the solid wastes, the increasing contamination of waste cellulose diacetate (CDA) from discarded cigarette filters is a growing problem worldwide. Finding a facile and suitable approach to convert the CDA into value-added materials is of significance. Herein, we reported a green, simple and effective method to reuse CDA as precursor for preparing fluorescence N-doped carbon dots (N-CDs) via one-pot hydrothermal carbonization in aqueous solution with low-cost ammonium hydroxide as the passivation agent.

View Article and Find Full Text PDF