Publications by authors named "Yanzhi He"

A fluorescent-colorimetric dual-signal platform, N, S co-doped carbon dots functionalized silver nanoparticles (NS-CDs-AgNPs), was designed in situ by reducing AgNO in the presence of N, S co-doped carbon dots (NS-CDs) under the assistance of microwave irradiation for glucose determination. With the formation of silver nanoparticles (AgNPs), the intrinsic fluorescence of NS-CDs was quenched, showing the fluorescence state was off. Whereas the fluorescence of NS-CDs can be switched on when a trace amount of HO was added.

View Article and Find Full Text PDF

Tetracycline (TC) is extensively utilized in livestock breeding, aquaculture, and medical industry. TC residues seriously harm food security, the environment, and human health. There is an urgent need to exploit a highly efficient and sensitive testing method to monitor TC residue levels in aquatic environments.

View Article and Find Full Text PDF

Carbon quantum dots (CQDs) have significant applications in nanozymes. However, previous studies have not elucidated the structure-activity relationship and enzyme mechanism. In this study, we employed a one-step microwave method to synthesize ultra-trace Ag-doped carbon quantum dots (Ag-CQDs).

View Article and Find Full Text PDF

An off-on fluorescent probe (NS-CDs-AgNPs) was synthesized based on a one-pot microwave process by utilizing N, S co-doping carbon dots (NS-CDs) and silver nitrate as precursors. The significant peak of NS-CDs-AgNPs at 393 nm in ultraviolet spectrum indicated silver nanoparticle (AgNPs) were successfully synthesized. A faint blue fluorescence emission (442 nm) was displayed when excited NS-CDs-AgNPs at 371 nm.

View Article and Find Full Text PDF

is the most common fungal pathogen in humans, causing invasive disease and even potentially life-threatening systemic infections when tissue homeostasis is disrupted. Previous studies have identified an essential role of platelets in infection and immunity, especially when they are activated. However, it is still unclear whether platelets can be activated by , and even less is known about the role of platelets in infection.

View Article and Find Full Text PDF

Background: Ribosomal L1 domain-containing protein 1 (RSL1D1) is a nucleolar protein that is essential in cell proliferation. In the current opinion, RSL1D1 translocates to the nucleoplasm under nucleolar stress and inhibits the E3 ligase activity of HDM2 via direct interaction, thereby leading to stabilization of p53.

Methods: Gene knockdown was achieved in HCT116, HCT116, and HCT-8 human colorectal cancer (CRC) cells by siRNA transfection.

View Article and Find Full Text PDF

Flavonols are a major subclass of flavonoids with a variety of biological and pharmacological activities. Here, we provide a method for the in vitro enzymatic synthesis of a flavonol. In this method, Atf3h and Atfls1, two key genes in the biosynthetic pathway of the flavonols, are cloned and overexpressed in Escherichia coli.

View Article and Find Full Text PDF

An in vitro multienzyme synthetic system was developed and optimized to efficiently produce kaempferol in a single reaction tube. Two key genes, Atf3h and Atfls1, in the biosynthetic pathway of kaempferol were cloned into a prokaryotic expression vector and overexpressed in Escherichia coli. The recombinant proteins were purified through affinity chromatography and showed activities of flavanone 3-hydroxylase and flavonol synthase, respectively, followed by development of an in vitro synthetic system for producing kaempferol.

View Article and Find Full Text PDF