Publications by authors named "Yanyun Jing"

Organic light-emitting diodes (OLEDs) utilizing multi-resonance (MR) emitters show great potential in ultrahigh-definition display benefitting from superior merits of MR emitters such as high color purity and photoluminescence quantum yields. However, the scarcity of narrowband pure-green MR emitters with novel backbones and facile synthesis has limited their further development. Herein, two novel pure-green MR emitters (IDIDBN and tBuIDIDBN) are demonstrated via replacing the carbazole subunits in the bluish-green BCzBN skeleton with new polycyclic aromatic hydrocarbon (PAH) units, 5-phenyl-5,10-dihydroindolo[3,2-b]indole (IDID) and 5-(4-(tert-butyl)phenyl)-5,10-dihydroindolo[3,2-b]indole (tBuIDID), to simultaneously enlarge the π-conjugation and enhance the electron-donating strength.

View Article and Find Full Text PDF

Multiple resonance (MR) compounds have garnered substantial attention for their prospective utility in wide color gamut displays. Nevertheless, developing red MR emitters with both high efficiency and saturated emission color remains demanding. We herein introduce a comprehensive strategy for spectral tuning in the red region by simultaneously regulating the π-conjugation and electron-donating strengths of a double boron-embedded MR skeleton while preserving narrowband characteristics.

View Article and Find Full Text PDF

Efficient protein and peptide expression and purification technologies are highly needed in biotechnology, especially in light of the increasing number of proteins and peptides that are being exploited for therapeutic use, which are inherently difficult to produce via biological means. In this chapter, we describe a facile, reliable, and cost-effective peptide production and purification strategy based on short self-assembling peptides (e.g.

View Article and Find Full Text PDF

Small-molecule thermally activated delayed fluorescence (TADF) materials have been extensively developed to actualize efficient organic LEDs (OLEDs). However, organic small molecules generally compromise thin film quality and stability due to the tendency of crystallization, aggregation, and phase separation, which hence degrade the efficiency and long-term stability of the OLEDs. Here, for the first time, we exploit the unique molecular configuration of the bimesitylene scaffold to design two highly efficient TADF amorphous molecular materials with excellent thermal and morphological stabilities.

View Article and Find Full Text PDF

Human growth hormone (hGH) plays an important role in growth control, growth promotion, cell development, and regulation of numerous metabolic pathways in the human body and has been approved by the U.S. FDA for the treatment of several human dysfunctions.

View Article and Find Full Text PDF

The CRISPR-Cas12a system has been demonstrated as an attractive tool for bacterial genome engineering. In particular, FnCas12a recognizes protospacer-adjacent motif (PAM) sites with medium or low GC content, which complements the Cas9-based systems. Here we explored Francisella novicida Cas12a (FnCas12a) for genome editing in Pseudomonas aeruginosa.

View Article and Find Full Text PDF

Immune cell therapy presents a paradigm for the treatment of malignant tumors. Human Vγ9Vδ2 T cells, a subset of peripheral γδ T cells, have been shown to have promising anti-tumor activity. However, new methodology on how to achieve a stronger anti-tumor activity of Vγ9Vδ2 T cells is under continuous investigation.

View Article and Find Full Text PDF

The NLRP3 inflammasome plays a critical role in mediating the innate immune defense against pathogenic infections, but aberrant activation of NLRP3 inflammasome has been linked to a variety of inflammatory diseases. Thus targeting the NLRP3 inflammasome represents a promising therapeutic for the treatment of such diseases. Scutellarin is a flavonoid isolated from (Vant.

View Article and Find Full Text PDF

The flavonoid baicalin has been reported to possess potent anti-inflammatory activities by suppressing inflammatory signaling pathways. However, whether baicalin can suppress the activation of NOD-like receptor (NLR) family, pyrin containing domain 3 (NLRP3) inflammasome in macrophages is largely unknown. Here, we showed that baicalin treatment dose-dependently inhibited adenosine triphosphate (ATP) or nigericin-induced NLRP3 inflammasome activation, as revealed by the decreased release of mature interleukin (IL)-1β, active caspase-1p10, and high-mobility group box-1 protein from lipopolysaccharide (LPS)-primed bone marrow-derived macrophages.

View Article and Find Full Text PDF

The isoquinoline alkaloid berberine possesses many pharmacological activities including antibacterial infection. Although the direct bactericidal effect of berberine has been documented, its influence on the antibacterial functions of macrophages is largely unknown. As inflammasome activation in macrophages is important for the defense against bacterial infection, we aimed to investigate the influence of berberine on inflammasome activation in murine macrophages.

View Article and Find Full Text PDF