Publications by authors named "Yanyi Zang"

Microfluidic membrane oxygenators are designed to mimic branching vasculature of the native lung during extracorporeal lung support. To date, scaling of such devices to achieve clinically relevant blood flow and lung support has been a limitation. We evaluated a novel multilayer microfluidic blood oxygenator (BLOx) capable of supporting 750-800 ml/min blood flow versus a standard hollow fiber membrane oxygenator (HFMO) in vivo during veno-venous extracorporeal life support for 24 hours in anesthetized, mechanically ventilated uninjured swine (n = 3/group).

View Article and Find Full Text PDF

Device-induced thrombosis remains a major complication of extracorporeal life support (ECLS). To more thoroughly understand how blood components interact with the artificial surfaces of ECLS circuit components, assessment of clot deposition on these surfaces following clinical use is urgently needed. Scanning electron microscopy (SEM), which produces high-resolution images at nanoscale level, allows visualization and characterization of thrombotic deposits on ECLS circuitry.

View Article and Find Full Text PDF

Numerous biomaterials have been developed for application in blood-contacting medical devices to prevent thrombosis; however, few materials have been applied to full-scale devices and evaluated for hemocompatibility under clinical blood flow conditions. We applied a dual-action slippery liquid-infused (LI) nitric oxide (NO)-releasing material modification (LINO) to full-scale blood circulation tubing for extracorporeal lung support and evaluated the tubing ex vivo using swine whole blood circulated for 6 h at a clinically relevant flow. LINO tubing was compared to unmodified tubing (CTRL) and isolated LI and NO-releasing modifications (n = 9/group).

View Article and Find Full Text PDF

Medical devices that require substantial contact between blood and a foreign surface would be dramatically safer if constructed from materials that prevent clot formation and coagulation disturbance at the blood-biomaterial interface. Nitric oxide (NO), an endogenous inhibitor of platelet activation in the vascular endothelium, could provide anticoagulation at the blood-surface interface when applied to biomaterials. We investigated an application of a copper-based metal-organic framework, H[(CuCl)(BTTri)-(HO)]·72HO where HBTTri = 1,3,5-tris(1-1,2,3-triazole-5-yl)benzene] (CuBTTri), which has been shown to be an effective catalyst to generate NO from -nitrosothiols that are endogenously present in blood.

View Article and Find Full Text PDF

Introduction: Clot formation, infection, and biofouling are unfortunate but frequent complications associated with the use of blood-contacting medical devices. The challenge of blood-foreign surface interactions is exacerbated during medical device applications involving substantial blood contact area and extended duration of use, such as extracorporeal life support (ECLS). We investigated a novel surface modification, a liquid-impregnated surface (LIS), designed to minimize protein adsorption and thrombus development on medical plastics.

View Article and Find Full Text PDF

Medical device-associated bacterial infections remain a significant complication for patients on extracorporeal organ support. Device-specific bacterial infections occur when bacteria enter the host tissue and attach to the devices, enabling bacteria to colonize and multiply rapidly. Preventing bacterial attachment would efficiently inhibit colonization and biofilm formation.

View Article and Find Full Text PDF

Thrombosis is one of the most critical challenges faced by successful clinical use of blood-contacting medical devices. The formation of blood clots on medical device surfaces is a multistep process that includes protein adsorption, platelet adhesion and activation, and platelet aggregation, resulting in platelet consumption and blockage of blood flow. Without proper treatment, thrombosis will lead to ultimate device failure and create complications in patients.

View Article and Find Full Text PDF

The endothelial glycocalyx lining the inside surfaces of blood vessels has multiple features that prevent inflammation, blood clot formation, and infection. This surface represents the highest standard in blood compatibility for long-term contact with blood under physiological flow rates. Engineering materials used in blood-contacting biomedical devices, including metals and polymers, have undesirable interactions with blood that lead to failure modes associated with inflammation, blood clotting, and infection.

View Article and Find Full Text PDF