Genomic imprinting refers to allele-specific expression of genes depending on parental origin, and it is regulated by epigenetic modifications. Intraspecific allelic variation for imprinting has been detected; however, the intraspecific genome-wide allelic epigenetic variation in maize and its correlation with imprinting variants remain unclear. Here, three reciprocal hybrids were generated by crossing Zea mays inbred lines CAU5, B73, and Mo17 in order to examine the intraspecific conservation of the imprinted genes in the kernel.
View Article and Find Full Text PDFFront Plant Sci
September 2023
Introduction: The husk tightness (HTI) in maize plays a crucial role in regulating the water content of ears during the maturity stage, thereby influencing the quality of mechanical grain harvesting in China. Genomic selection (GS), which employs molecular markers, offers a promising approach for identifying and selecting inbred lines with the desired HTI trait in maize breeding. However, the effectiveness of GS is contingent upon various factors, including the genetic architecture of breeding populations, sequencing platforms, and statistical models.
View Article and Find Full Text PDFPurple corn anthocyanins are important natural colourants with cheap prices and rich bioactivities. However, their stability is limited. Microencapsulation is an effective way to improve anthocyanin stability and the influence of the type of wall material on the stability of encapsulated anthocyanin is very important.
View Article and Find Full Text PDFValine-glutamine (VQ) motif-containing proteins are transcriptional regulatory cofactors that play critical roles in plant growth and response to biotic and abiotic stresses. However, information on the gene family in foxtail millet ( L.) is currently limited.
View Article and Find Full Text PDFChlorophyll is an essential component that captures light energy to drive photosynthesis. Chlorophyll content can affect photosynthetic activity and thus yield. Therefore, mining candidate genes of chlorophyll content will help increase maize production.
View Article and Find Full Text PDFIntroduction: Drought stress is one of the most serious abiotic stresses leading to crop yield reduction. Due to the wide range of planting areas, the production of maize is particularly affected by global drought stress. The cultivation of drought-resistant maize varieties can achieve relatively high, stable yield in arid and semi-arid zones and in the erratic rainfall or occasional drought areas.
View Article and Find Full Text PDFSweet corn and waxy corn has a better taste and higher accumulated nutritional value than regular maize, and is widely planted and popularly consumed throughout the world. Plant height (PH), ear height (EH), and tassel branch number (TBN) are key plant architecture traits, which play an important role in improving grain yield in maize. In this study, a genome-wide association study (GWAS) and genomic prediction analysis were conducted on plant architecture traits of PH, EH, and TBN in a fresh edible maize population consisting of 190 sweet corn inbred lines and 287 waxy corn inbred lines.
View Article and Find Full Text PDFGenomic imprinting is a classic epigenetic phenomenon related to the uniparental expression of genes. Imprinting variability exists in seeds and can contribute to observed parent-of-origin effects on seed development. Here, we conducted allelic expression of the embryo and endosperm from four crosses at 11 days after pollination (DAP).
View Article and Find Full Text PDFIn this study, pectin (PC), whey protein isolate (WPI), and chitosan (CS) were combined with purple corn cob anthocyanins (PCCA). Four complexes, PC-PCCA, WPI-PCCA, WPI-PC-PCCA, and CS-PC-PCCA were prepared to evaluate the improvement in the α-glucosidase inhibitory activity and digestive stability of PCCA. The encapsulation efficiency (EE), particle size, physical properties, and mode of action of the synthesized PCCA complexes were evaluated.
View Article and Find Full Text PDFCell wall proteins perform diverse cellular functions in response to abiotic and biotic stresses. To elucidate the possible mechanisms of salt-stress tolerance in tomato. The 30 d seedlings of two tomato genotypes with contrasting salt tolerances were transplanted to salt stress (200 mM NaCl) for three days, and then, the cell wall proteins of seedling roots were analyzed by isobaric tags for relative and absolute quantification (iTRAQ).
View Article and Find Full Text PDFThe gene family plays important roles in diurnal rhythm and abiotic stress response, affecting crop growth and development, and thus yield. However, little information is available on the family in foxtail millet (). In the present study, we identified 37 putative genes from the foxtail millet genome.
View Article and Find Full Text PDFThe sugar will eventually be exported transporters (SWEET) family is an important group of transport carriers for carbon partitioning in plants and has important functions in growth, development, and abiotic stress tolerance. Although the SWEET family is an important sugar transporter, little is known of the functions of the SWEET family in maize (), especially in response to abiotic stresses. To further explore the response pattern of maize SWEET to abiotic stress, a bioinformatics-based approach was used to predict and identify the maize gene () family.
View Article and Find Full Text PDFBrace roots are the main organ to support the above-ground part of maize plant. It involves in plant growth and development by water absorption and lodging resistance. The bracing root angle (BRA) and diameter (BRD) are important components of brace root traits.
View Article and Find Full Text PDFBackground: Long non-coding RNAs (lncRNAs), as important regulators, play important roles in plant growth and development. The expression and epigenetic regulation of lncRNAs remain uncharacterized generally in plant seeds, especially in the transient endosperm of the dicotyledons.
Results: In this study, we identified 11,840 candidate lncRNAs in 12 day-after-pollination sunflower endosperm by analyzing RNA-seq data.
For efficient mechanical harvesting, low grain moisture content at harvest time is essential. Dry-down rate (DR), which refers to the reduction in grain moisture content after the plants enter physiological maturity, is one of the main factors affecting the amount of moisture in the kernels. Dry-down rate is estimated using kernel moisture content at physiological maturity and at harvest time; however, measuring kernel water content at physiological maturity, which is sometimes referred as kernel water content at black layer formation (BWC), is time-consuming and resource-demanding.
View Article and Find Full Text PDFSeed germination is an important agronomic trait that affects crop yield and quality. Rapid and uniform seed germination traits are required in agricultural production. Although several genes are involved in seed germination and have been identified in Arabidopsis and rice, the genetic basis governing seed germination in maize remains unknown.
View Article and Find Full Text PDFMetaxylem vessels in maize brace roots are key tissue, and their number (MVN) affects plant water and inorganic salt transportation and lodging resistance. Dissecting the genetic basis of MVN in maize brace roots can help guide the genetic improvement of maize drought resistance and lodging resistance during late developmental stages. In this study, we used 508 inbred lines with tropical, subtropical, and temperate backgrounds to analyze the genetic architecture of MVN in maize brace roots.
View Article and Find Full Text PDFBackground: Genomic imprinting is an epigenetic phenomenon mainly occurs in endosperm of flowering plants. Genome-wide identification of imprinted genes have been completed in several dicot Cruciferous plant and monocot crops.
Results: Here, we analyzed global patterns of allelic gene expression in developing endosperm of sunflower which belongs to the composite family.
Maize is one of the most vital staple crops worldwide. G proteins modulate plentiful signaling pathways, and G protein-coupled receptor-type G proteins (GPCRs) are highly conserved membrane proteins in plants. However, researches on maize G proteins and GPCRs are scarce.
View Article and Find Full Text PDFIn maize, the shank is a unique tissue linking the stem to the ear. Shank length (SL) mainly affects the transport of photosynthetic products to the ear and the dehydration of kernels via regulated husk morphology. The limited studies on SL revealed it is a highly heritable quantitative trait controlled by significant additive and additive-dominance effects.
View Article and Find Full Text PDFCallus formation and adventitious shoot differentiation could be observed on the cut surface of completely decapitated tomato plants. We propose that this process can be used as a model system to investigate the mechanisms that regulate indirect regeneration of higher plants without the addition of exogenous hormones. This study analyzed the patterns of trans-zeatin and miRNA expression during in vivo regeneration of tomato.
View Article and Find Full Text PDFHusk has multiple functions such as protecting ears from diseases, infection, and dehydration during development. Additionally, husks comprised of fewer, shorter, thinner, and narrower layers allow faster moisture evaporation of kernels prior to harvest. Intensive studies have been conducted to identify appropriate husk architecture by understanding the genetic basis of related traits, including husk length, husk layer number, husk thickness, and husk width.
View Article and Find Full Text PDFThe husk is a leafy outer tissue that encloses a maize ear. Previously, we identified the optimum husk structure by measuring the husk length, husk layer number, husk thickness and husk width. Husk tightness (HTI) is a combined trait based on the above four husk measurements.
View Article and Find Full Text PDFEnriching of kernel zinc (Zn) concentration in maize is one of the most effective ways to solve the problem of Zn deficiency in low and middle income countries where maize is the major staple food, and 17% of the global population is affected with Zn deficiency. Genomic selection (GS) has shown to be an effective approach to accelerate genetic gains in plant breeding. In the present study, an association-mapping panel and two maize double-haploid (DH) populations, both genotyped with genotyping-by-sequencing (GBS) and repeat amplification sequencing (rAmpSeq) markers, were used to estimate the genomic prediction accuracy of kernel Zn concentration in maize.
View Article and Find Full Text PDF