Publications by authors named "Yanxiu Zhao"

Lipid droplets (LDs) are important organelles conserved across eukaryotes with a fascinating biogenesis and consumption cycle. Recent intensive research has focused on uncovering the cellular biology of LDs, with emphasis on their degradation. Briefly, two major pathways for LD degradation have been recognized: (1) lipolysis, in which lipid degradation is catalyzed by lipases on the LD surface, and (2) lipophagy, in which LDs are degraded by autophagy.

View Article and Find Full Text PDF

Background: Acute kidney injury (AKI) is a common and serious medical condition with high morbidity and mortality. Recent research has highlighted ferroptosis, a novel form of programmed cell death, as a potential therapeutic target in mitigating renal tubular injury in AKI. Ferrostatin-1, a specific ferroptosis inhibitor, has been demonstrated to prevent renal injury through ferroptosis inhibition.

View Article and Find Full Text PDF

Alternative splicing of pre-mRNAs is crucial for plant growth and development. Serine/arginine-rich (SR) proteins are a conserved family of RNA-binding proteins that are critical for both constitutive and alternative splicing. However, how phosphorylation of SR proteins regulates gene transcription and alternative splicing during plant development is poorly understood.

View Article and Find Full Text PDF

ATP-binding cassette transporter G (ABCG) has been shown to be engaged in export of broad-spectrum compounds with structural differences, but little is known concerning its role in cutin formation of cotton ( spp.). In this study, we conduct a genome-wide survey and detected 69, 71, 124 and 131 ABCG genes within , , and , separately.

View Article and Find Full Text PDF

Seed size is a key factor affecting crop yield and a major agronomic trait concerned in peanut ( L.) breeding. However, little is known about the regulation mechanism of peanut seed size.

View Article and Find Full Text PDF

Salt cress (), an -related halophyte, can naturally adapt to various harsh climates and soil conditions; thus, it is considered a desirable model plant for deciphering mechanisms of salt and other abiotic stresses. Accumulating evidence has revealed that compared with , salt cress possesses stomata that close more tightly and more succulent leaves during extreme salt stress, a noticeably higher level of proline, inositols, sugars, and organic acids, as well as stress-associated transcripts in unstressed plants, and they are induced rapidly under stress. In this review, we systematically summarize the research on the morphology, physiology, genome, gene expression and regulation, and protein and metabolite profile of salt cress under salt stress.

View Article and Find Full Text PDF

Salt cress (, aka ) is an extremophile and a close relative of . To understand the mechanism of selection of complex traits under natural variation, we analyzed the physiological and proteomic differences between Shandong (SD) and Xinjiang (XJ) ecotypes. The SD ecotype has dark green leaves, short and flat leaves, and more conspicuous taproots, and the XJ ecotype had greater biomass and showed clear signs of senescence or leaf shedding with age.

View Article and Find Full Text PDF

Quinoa is a cold-resistant and nutrient-rich crop. To decipher the cold stress response of quinoa, the full-length transcriptomes of the cold-resistant quinoa variety CRQ64 and the cold-sensitive quinoa variety CSQ5 were compared. We identified 55,389 novel isoforms and 6432 novel genes in these transcriptomes.

View Article and Find Full Text PDF

Salt stress is an important environmental factor limiting plant growth and crop production. Plant adaptation to salt stress can be improved by chemical pretreatment. This study aims to identify whether hydrogen peroxide (HO) pretreatment of seedlings affects the stress tolerance of seedlings.

View Article and Find Full Text PDF

Autophagy is a ubiquitous process used widely across plant cells to degrade cellular material and is an important regulator of plant growth and various environmental stress responses in plants. The initiation and dynamics of autophagy in plant cells are precisely controlled according to the developmental stage of the plant and changes in the environment, which are transduced into intracellular signaling pathways. These signaling pathways often regulate autophagy by mediating TOR (Target of Rapamycin) kinase activity, an important regulator of autophagy initiation; however, some also act via TOR-independent pathways.

View Article and Find Full Text PDF

Plant height is a fundamentally crucial agronomic trait to control crop growth and high yield cultivation. Several studies have been conducted on the understanding ofmolecular genetic bases of plant height in model plants and crops. However, the molecular mechanism underlying peanut plant height development is stilluncertain.

View Article and Find Full Text PDF

All eukaryotes rely on the ubiquitin-proteasome system (UPS) and autophagy to control the abundance of key regulatory proteins and maintain a healthy intracellular environment. In the UPS, damaged or superfluous proteins are ubiquitinated and degraded in the proteasome, mediated by three types of ubiquitin enzymes: E1s (ubiquitin activating enzymes), E2s (ubiquitin conjugating enzymes), and E3s (ubiquitin protein ligases). Conversely, in autophagy, a vesicular autophagosome is formed that transfers damaged proteins and organelles to the vacuole, mediated by a series of ATGs (autophagy related genes).

View Article and Find Full Text PDF

Autophagy is an intracellular process that facilitates the bulk degradation of cytoplasmic materials by the vacuole or lysosome in eukaryotes. This conserved process is achieved through the coordination of different genes (). Autophagy is essential for recycling cytoplasmic material and eliminating damaged or dysfunctional cell constituents, such as proteins, aggregates or even entire organelles.

View Article and Find Full Text PDF

Background: Plant height, mainly decided by main stem height, is the major agronomic trait and closely correlated to crop yield. A number of studies had been conducted on model plants and crops to understand the molecular and genetic basis of plant height. However, little is known on the molecular mechanisms of peanut main stem height.

View Article and Find Full Text PDF

Background: Grafting, an ancient agronomic technique, is an artificial mode of asexual reproduction in plants. Recently, grafting research has gradually shifted from modifying agronomic traits to the study of molecular mechanism. Grafting is an excellent tool to study long-range signaling processes in plants.

View Article and Find Full Text PDF

A VIGS method by agroinoculation of cotton seeds was developed for gene silencing in young seedlings and roots, and applied in functional analysis of GhBI-1 in response to salt stress. Virus-induced gene silencing (VIGS) has been widely used to investigate the functions of genes expressed in mature leaves, but not yet in young seedlings or roots of cotton (Gossypium hirsutum L.).

View Article and Find Full Text PDF

Hydrogen peroxide (H O ) is generated in many metabolic processes. As a signaling molecule, H O plays important roles in plant growth and development, as well as environmental stress response. In Arabidopsis, there are three catalase genes, CAT1, CAT2, and CAT3.

View Article and Find Full Text PDF

The opening and closing of stomata are crucial for plant photosynthesis and transpiration. Actin filaments undergo dynamic reorganization during stomatal closure, but the underlying mechanism for this cytoskeletal reorganization remains largely unclear. In this study, we identified and characterized Arabidopsis thaliana casein kinase 1-like protein 2 (CKL2), which responds to abscisic acid (ABA) treatment and participates in ABA- and drought-induced stomatal closure.

View Article and Find Full Text PDF

Soybean [Glycine max (L.) Merrill] is an important crop worldwide. In this study, a Chinese local soybean cultivar, Hedou 12, was resequenced by next generation sequencing technology to develop INsertion/DELetion (INDEL) markers for genetic mapping.

View Article and Find Full Text PDF

Actin cytoskeleton dynamics is critical for variety of cellular events including cell elongation, division and morphogenesis, and is tightly regulated by numerous groups of actin binding proteins. However it is not well understood how these actin binding proteins are modulated in a physiological condition by their interaction proteins. In this study, we describe that Arabidopsis 14-3-3 λ protein interacted with actin depolymerizing factor 1 (ADF1) in plant to regulate F-actin stability and dynamics.

View Article and Find Full Text PDF

It is believed that transferring the C4 engine into C3 crops will greatly increase the yields of major C3 crops. Many efforts have been made since the 1960s, but relatively little success has been achieved because C4plant traits, referred to collectively as C4 syndrome, are very complex, and little is known about the genetic mechanisms involved. Unfortunately, there exists no ideal genetic model system to study C4 syndrome.

View Article and Find Full Text PDF

Plants can successfully improve their resistance to previously lethal salinity stress by a short exposure to low levels of salt stress, a process known as salt acclimation (SA). In spite of its fundamental significance in theoretical study and agricultural practice, the molecular mechanisms underlying plant SA remain elusive. In this study, we found that salt acclimated Arabidopsis young seedlings can survive subsequent 200 mM NaCl stress.

View Article and Find Full Text PDF
Article Synopsis
  • MicroRNAs (miRNAs) are crucial for plant growth and help in adapting to environmental stresses, particularly in the salt-tolerant plant Thellungiella salsuginea (salt cress), which has been little studied in this regard.
  • The researchers sequenced small RNA libraries from T. salsuginea, identifying 109 known miRNAs and 137 novel miRNA candidates, with a significant portion related to salt stress tolerance and target mRNAs involved in key functions such as transcription and defense.
  • The findings suggest that various miRNAs in T. salsuginea respond to salt stress, indicating their potential role in enhancing the plant's ability to cope with high salinity environments.
View Article and Find Full Text PDF

Amyotrophic lateral sclerosis (ALS) is a fatal disease that involves the degeneration of cortical and spinal motor neurons. Mutant SOD1(G93A) rats constitute a good animal model for this pathological condition. We have previously demonstrated that transplantation of neonatal olfactory ensheathing cells (OECs) into the dorsal funiculus of the spinal cord of mutant SOD1(G93A) transgenic rats increases the survival of spinal motor neurons and remyelinates the impaired axons through the pyramidal tract.

View Article and Find Full Text PDF

Background: After the zygote divides few times, the development of peanut pre-globular embryo and fruit is arrested under white or red light. Embryo development could be resumed in dark condition after gynophore is buried in soil. It is interesting to study the mechanisms of gynophore development and pod formation in peanut.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessional08a2oo82u210p80t33phlqlj76llv2): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once