Fourier ptychography (FP) is a high resolution wide-field imaging method based on the extended aperture in the Fourier space, which is synthesized from raw images with varying illumination angles. If FP is extended to coherent nonlinear optical imaging, the resolution could be further improved due to the increase of the cutoff frequency of the synthesized coherent optical transfer function (C-OTF) with respect to the order of nonlinear optical processes. However, there is a fundamental conflict between wide-field FP and nonlinear optical imaging, whereby the nonlinear optical imaging typically requires a focused excitation laser beam with high power density.
View Article and Find Full Text PDFMaterials with electromechanical coupling are essential for transducers and acoustic devices as reversible converters between mechanical and electrical energy. High electromechanical responses are typically found in materials with strong structural instabilities, conventionally achieved by two strategies-morphotropic phase boundaries and nanoscale structural heterogeneity. Here we demonstrate a different strategy to accomplish ultrahigh electromechanical response by inducing extreme structural instability from competing antiferroelectric and ferroelectric orders.
View Article and Find Full Text PDFHigh-sensitivity radiation detectors for energetic particles are essential for advanced applications in particle physics, astronomy and cancer therapy. Current particle detectors use bulk crystals, and thin-film organic scintillators have low light yields and limited radiation tolerance. Here we present transmissive thin scintillators made from CsPbBr nanocrystals, designed for real-time single-proton counting.
View Article and Find Full Text PDFUltramicroscopy
November 2023
The spatial resolution plays a crucial role in determining the performance of a nuclear microprobe. However, the formation of spatial resolutions below 10 nm remains a challenge in nuclear microprobes. Here, we propose novel technologies (near-axis scanning transmission ion microscopy and double-fragment scattering) utilizing molecular ions to address this challenge and demonstrate a H molecular beam with 6.
View Article and Find Full Text PDFCorrelative imaging and quantification of intracellular nanoparticles with the underlying ultrastructure is crucial for understanding cell-nanoparticle interactions in biological research. However, correlative nanoscale imaging of whole cells still remains a daunting challenge. Here, we report a straightforward nanoscopic approach for whole-cell correlative imaging, by simultaneous ionoluminescence and ultrastructure mapping implemented with a highly focused beam of alpha particles.
View Article and Find Full Text PDFFocus and Aberrations of Nuclear Microprobe (FANM) is a new beam optics package to achieve fast and accurate design of a nuclear microprobe. FANM achieves a balance between speed of focusing and accuracy of high order aberrations. A combined method proposed in FANM is to achieve focusing conditions using a matrix method and to calculate aberration coefficients using a numerical ray tracing method.
View Article and Find Full Text PDFA new type of ion source is being developed for proton beam writing and other focused ion beam applications. The potential of this source as well as achieved performance of the nano aperture ion source will be evaluated. Based on the ideal source parameters, critical geometrical parameters constraining chromatic aberrations and a possible pathway to achieve this performance will be presented.
View Article and Find Full Text PDFIn Harbin, we are developing a 300MeV proton microbeam for many applications in space science including upset studies in microelectronic devices, radiation hardness of materials for satellites and radiation effects in human tissues. There are also applications of this facility proposed for proton therapy. The microbeam system will employ a purpose-built proton synchrotron to provide the beam.
View Article and Find Full Text PDF