Publications by authors named "Yanxiao Wei"

Biofilms offer a solution to the challenge of low biomass retention faced in mainstream partial nitritation/Anammox (PN/A) applications. In this study, a one-stage PN/A reactor derived from initial granular sludge was successfully transformed into a biofilm system using shedding carriers. Environmental stressors, such as ammonium nitrogen concentration and organic matter, significantly affected the competitive dynamics and dominant species composition between Ca.

View Article and Find Full Text PDF
Article Synopsis
  • - The study introduces a new wastewater treatment approach that combines high-rate activated sludge (HRAS) with partial nitritation/anammox (PN/A) to effectively treat municipal wastewater.
  • - An airlift HRAS reactor was tested for 200 days, optimizing conditions that balance the stability of the PN/A system and performance of HRAS under reduced hydraulic retention times (HRT).
  • - Results indicate that the optimal HRT for the process is 3 hours, leading to significant reductions in energy consumption, CO emissions, and high rates of chemical oxygen demand (COD) removal, advancing the goal of energy efficiency and carbon neutrality in wastewater treatment.
View Article and Find Full Text PDF

The long-stabilized mainstream partial nitritation/Anammox (PN/A) process continues to encounter significant challenges from nitrite-oxidizing bacteria (NOB). Therefore, this study aimed to determine an efficient, rapid, and easily implementable strategy for inhibiting NOB. A laboratory-scale reactor was operated continuously for 325 days, experiencing NOB outbreak in mainstream and recovery with simulated sidestream support.

View Article and Find Full Text PDF

Nitrite-oxidizing bacteria (NOB) seriously threaten the partial nitritation and Anammox (PN/A) process, hindering its mainstream application. Herein, a one-stage PN/A reactor was continuously operated for 245 days under nitrogen loading rate lifted from 0.4 g N/L/d to 0.

View Article and Find Full Text PDF

The performance stability and its recovery mechanisms of a partial nitritation-anammox process were investigated. A one-stage airlift enhanced micro-granules (AEM) system was operated for 650 days continuously to treat 50 mg-NH/L wastewater. During the stable stage, a high nitrogen removal efficiency of 72.

View Article and Find Full Text PDF

To investigate the anaerobic treatment efficiency and degradation pathways of glutamate-rich wastewater under various hydraulic retention times (HRTs), a lab-scale upflow anaerobic sludge blanket (UASB) reactor was operated continuously for 180 days. Results showed that high chemical oxygen demand (COD) removal efficiencies of 95.5%-96.

View Article and Find Full Text PDF

To investigate the effect of the organic loading rate (OLR) on anaerobic treatment of monosodium glutamate (MSG) wastewater, a lab-scale up-flow anaerobic blanket (UASB) reactor was continuously operated over a 222-day period. The overall performances of COD removal and methane recovery initially exhibited an increase and subsequently decreased when the OLR was increased from 1 g-COD/L/d to 24 g-COD/L/d. At the optimal OLR of 8 g-COD/L/d, superior performance was obtained with a maximum COD removal efficiency of 97%, a methane production rate of 2.

View Article and Find Full Text PDF

To upgrade a wet flue gas desulfurization (FGD) wastewater treatment process in a typical thermal power plant (TPP) in Hunan province, China, a new concept for reusing polyaluminum chloride (PAC)-based water treatment plant sludge (WTPS) as a coagulant is proposed. Results show that, for an optimal WTPS dosage of 1,000 mg/L, the corresponding removal capacities for suspended solids (SS) and chemical oxygen demand (COD) from the practical FGD wastewater were 58.3% and 40.

View Article and Find Full Text PDF