Off-seasonal water level regulations disrupt the biological traits and phenological rhythms of native fish species, yet their impacts on interspecific trophic interactions remain understudied. This study employed stable isotope analysis to assess the trophic dynamics of three fish species (, , and ) across different water periods in Hongze Lake. The findings revealed that all three species occupied similar mid-level trophic positions, with no significant difference among water periods ( > 0.
View Article and Find Full Text PDFBioresour Technol
October 2024
Utilizing flue gas CO to co-produce eicosapentaenoic acid (EPA) with microalgae is considered an ideal approach for combating climate change and reducing cultivation costs. However, microalgal species that can efficiently produce EPA under high-CO conditions are scarce. This study identified that the eustigmatophycean strain Vacuoliviride crystalliferum demonstrates rapid growth under 20 % CO conditions (0.
View Article and Find Full Text PDFSci Total Environ
November 2024
Nitrogen removal is essential for restoring eutrophic lakes. Microorganisms and aquatic plants in lakes are both crucial for removing excess nitrogen. However, microplastic (MP) pollution and the invasion of exotic aquatic plants have become increasingly serious in lake ecosystems due to human activity and plant-dominant traits.
View Article and Find Full Text PDFThe bioavailability and toxicity of organic pollutants in aquatic organisms can be largely affected by the co-existed nanoparticles. However, the impacts of such combined exposure on the visual system remain largely unknown. Here, we systematically investigated the visual toxicity in zebrafish larvae after single or joint exposure to titanium dioxide nanoparticles (n-TiO) and bis(2-ethylhexyl)-2,3,4,5-tetrabromophthalate (TBPH) at environmentally relevant levels.
View Article and Find Full Text PDFThe vast majority of processes in the carbon and nitrogen cycles are driven by microorganisms. The nitrite-dependent anaerobic oxidation of methane (N-DAMO) process links carbon and nitrogen cycles, offering a novel approach for the simultaneous reduction of methane emissions and nitrite pollution. However, there is currently no comprehensive summary of the current status of the N-DAMO process in natural aquatic environments.
View Article and Find Full Text PDFWith the increasing use and release of plastic products, microplastics have rapidly accumulated in ecological environments. When microplastics enter the food chain, they cause serious harm to organisms and humans. Microplastics pollution has become a growing concern worldwide; however, there is still no standardized method for rapidly and accurately detecting microplastics.
View Article and Find Full Text PDFMicrobial degradation is an important route for removing environmental microcystins (MCs). Here, we investigated the ecological distribution of microcystin degraders (-genotype), and the relationship between the substrate specificity of the microcystin degrader and the profile of microcystin congener production in the habitat. We showed that microcystin degraders were widely distributed and closely associated with abundance in Lake Taihu, China.
View Article and Find Full Text PDFThe coexistence of nanoparticles and organic toxicants in the environment modifies pollutant bioavailability and toxicity. This study investigated the influence of silicon dioxide nanoparticles (n-SiO) on the uptake of tetrabromobisphenol A (TBBPA) and its impact on the thyroid endocrine system in zebrafish larvae. Zebrafish (Danio rerio) embryos were exposed to TBBPA at different concentrations (50, 100, and 200 μg/L) alone or in combination with n-SiO (25 mg/L) until 120 h post-fertilization (hpf).
View Article and Find Full Text PDFWetlands have numerous critical ecological functions, some of which are regulated by several nitrogen (N) and carbon (C) biogeochemical processes, such as denitrification, organic matter decomposition, and methane emission. Until now, the underlying pathways of the effects of environmental and biological factors on wetland N and C cycling rates are still not fully understood. Here, we investigated soil potential/net nitrification, potential/unamended denitrification, methane production/oxidation rates in 36 riverine, lacustrine, and palustrine wetland sites on the Tibet Plateau.
View Article and Find Full Text PDFThe distribution of metals in cyanobloom-forming lakes, and potential risks of these metals during irrigation with water derived from the bloom were evaluated in this study. Seven metals were monitored throughout a cyanobacterial bloom season in Lake Taihu. Cyanobloom bio-dilution of the targeted metals could be explained by the negative relationships between total phytoplankton metal contents (Cu, Fe, Zn, Pb and Cr) and Chl a concentrations (p<0.
View Article and Find Full Text PDFMusty and earthy odors frequently characterize the source water and fish of the Xionghe Reservoir in China. Although odorous compounds and odor-producing cyanobacteria have been analyzed in surface water, potential odorants in sediments and their contribution to the water body have remained uninvestigated. In this study, we examined the odorous compounds and possible odor-producers in the sediments and overlying water of Xionghe Reservoir from November 2007 to October 2008.
View Article and Find Full Text PDF