The current state of systemic therapy for advanced biliary tract cancer (BTC) has undergone significant changes. Currently, there are no clinical trials directly comparing various first-line systemic therapy regimens to each other, and these trials are unlikely to be conducted in the future. In this systematic review, after various abstracts and full-text articles published from the establishment of the database until October 2024 were searched, we included and analysed phase 3 clinical trials to evaluate the efficacy of different first-line systemic treatment regimens in advanced BTC.
View Article and Find Full Text PDFThe roles of γδ T cells in liver cancer, especially in the potential function of immunotherapy due to their direct cytotoxic effects on tumor cells and secretion of important cytokines and chemokines, have aroused research interest. This review briefly describes the basic characteristics of γδ T cells, focusing on their diverse effects on liver cancer. In particular, different subtypes of γδ T cells have diverse or even opposite effects on liver cancer.
View Article and Find Full Text PDFHepatocellular carcinoma (HCC) is associated with a highly heterogeneous immune environment that produces an immune response to various locoregional treatments (LRTs), which in turn affects the effectiveness of immunotherapy. Although LRTs still dominate HCC therapies, 50-60% of patients will ultimately be treated with systemic therapies and might receive those treatments for the rest of their life. TACE, SIRT, and thermal ablation can dramatically increase the immunosuppressive state of HCC, a condition that can be addressed by combination with immunotherapy to restore the activity of lymphocytes and the secretion of cellular immune factors.
View Article and Find Full Text PDFBackground: Efforts to precisely assess tumor-specific T-cell immune responses still face major challenges, and the potential molecular mechanisms mediating hepatocellular carcinoma (HCC) microenvironment imbalance after incomplete radiofrequency ablation (iRFA) are unclear. This study aimed to provide further insight into the integrated transcriptomic and proteogenomic landscape and identify a new target involved in HCC progression following iRFA.
Methods: Peripheral blood and matched tissue samples were collected from 10 RFA-treated HCC patients.
Hepatocellular carcinoma (HCC) remains a health challenge with increasing incidence worldwide. Radiofrequency ablation (RFA) is a potentially curative option for patients with early-stage HCC. However, the high rate of tumor recurrence limits long-term survival when the tumors are larger than 2 cm and undergoing insufficient RFA (iRFA).
View Article and Find Full Text PDFExtracting lithium electrochemically from seawater has the potential to resolve any future lithium shortage. However, electrochemical extraction only functions efficiently in high lithium concentration solutions. Herein, we discovered that lithium extraction is temperature and concentration dependent.
View Article and Find Full Text PDFDirect catalytic decomposition of methane (CDM) has been studied as a possible emission-free hydrogen production route for over 100 years. However, the high cost of catalyst regeneration limits its practical applications. Here, we demonstrate that the solid by-product from CDM using Fe ore catalysts comprising carbon nano onions encapsulated with magnetic Fe cores (Fe@C) can serve as efficient and recyclable Fenton catalysts for pollutant degradation.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
November 2021
Honghu Lake, the largest shallow lake in Jianghan Plain of China, is essential for maintaining ecosystem functioning in this region. However, water pollution and high disturbance are seriously threatening the ecological security of this lake. To explore the causes of water quality fluctuations in Honghu Lake, the water quality index method (CCME-WQI), multivariate statistical, and source apportionment techniques were adopted to characterize temporal trends in lake water quality (2004-2017), identify the main driving factors of water quality indicators, and quantify the contribution of various pollution sources.
View Article and Find Full Text PDFACS Appl Mater Interfaces
February 2021
Lithium (Li) production based on the soda evaporation process is time-consuming and unsustainable. The emerging electrochemical Li extraction is time-efficient but requires high-concentration Li sources and significant electrical energy input. Here, we demonstrate a fast, energy-saving, and environment-friendly Li production process by coupling a thermally regenerative electrochemical cycle (TREC) using lithium manganese oxide (LMO) and nickel hexacyanoferrate (NiHCF) electrodes with poly(vinylidene fluoride) membrane-based thermo-osmosis (denoted as TO-TREC).
View Article and Find Full Text PDF2D materials have shown high potentials for fabricating next-generation membranes. To date, extensive studies have focused on the applications of 2D material membranes in gas and aqueous media. Recently, compelling opportunities emerge for 2D material membranes in separation applications in organic solvents because of their unique properties, such as ultrathin mono- to few-layers, outstanding chemical resistance toward organic solvents.
View Article and Find Full Text PDF