Publications by authors named "Yanwei Jia"

Dipines are a type of important antihypertensive drug as L-calcium channel blockers, whose core skeleton is the 1,4-dihydropyridine structure. Since the dihydropyridine ring is a key structural factor for biological activity, the thermodynamics of the aromatization dihydropyridine ring is a significant feature parameter for understanding the mechanism and pathways of dipine metabolism in vivo. Herein, 4-substituted-phenyl-2,6-dimethyl-3,5-diethyl-formate-1,4-dihydropyridines are refined as the structurally closest dipine models to investigate the thermodynamic potential of dipine oxidative metabolism.

View Article and Find Full Text PDF
Article Synopsis
  • * A new digital microfluidic system has been created to efficiently screen multiple drugs using these tumor cells, achieving high throughput with a compact design.
  • * Validations in mice and patient liver cancer samples indicate that the system can effectively identify suitable drugs for individual tumors, supporting its potential to improve precision medicine in cancer treatment.
View Article and Find Full Text PDF

Lysozyme (LYZ) plays a crucial role in the body's immune defense system. Monitoring LYZ levels can provide valuable insights into the diagnosis and severity assessment of various diseases. Traditionally, antibody-based sandwich assays are employed for LYZ detection, but they are often time-consuming and operationally complicated.

View Article and Find Full Text PDF

Bilestones are solid masses found in the gallbladder or biliary tract, which block the normal bile flow and eventually result in severe life-threatening complications. Studies have shown that bilestone formation may be related to bile flow dynamics and the concentration level of bile components. The bile flow dynamics in the biliary tract play a critical role in disclosing the mechanism of bile stasis and transportation.

View Article and Find Full Text PDF

With the development of in vitro diagnostics, extracting submicron scale particles from mixed body fluids samples is crucial. In recent years, microfluidic separation has attracted much attention due to its high efficiency, label-free, and inexpensive nature. Among the microfluidic-based separation, the separation based on ultrasonic standing waves has gradually become a powerful tool.

View Article and Find Full Text PDF

Excessive CO and food shortage are two grand challenges of human society. Directly converting CO into food materials can simultaneously alleviate both, like what green crops do in nature. Nevertheless, natural photosynthesis has a limited energy efficiency due to low activity and specificity of key enzyme D-ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO).

View Article and Find Full Text PDF

Real-time pH control on-chip is a crucial factor for cell-based experiments in microfluidics, yet difficult to realize. In this paper, we present a flexible pH regulator on a digital microfluidic (DMF) platform. The pico-dosing technology, which can generate and transfer satellite droplets, is presented to deliver alkali/acid into the sample solution to change the pH value of the sample.

View Article and Find Full Text PDF

The mechanics of bile flow in the biliary system plays an important role in studying bile stasis and gallstone formation. Bile duct stricture is an abnormal phenomenon that refers to the bile duct getting smaller or narrower. The main objective of this study is to study the influence of stricture on bile flow dynamics using numerical methods.

View Article and Find Full Text PDF

Gliomas are histologically and genetically heterogeneous tumors. However, classical histopathological typing often ignores the high heterogeneity of tumors and thus cannot meet the requirements of precise pathological diagnosis. Here, proximity-anchored in situ spectral coding amplification (ProxISCA) is proposed for multiplexed imaging of RNA mutations, enabling visual typing of brain gliomas with different pathological grades at the single-cell and tissue levels.

View Article and Find Full Text PDF

The development of a rapid and reliable polymerase chain reaction (PCR) method for point-of-care (POC) diagnosis is crucial for the timely identification of pathogens. Microfluidics, which involves the manipulation of small volumes of fluidic samples, has been shown to be an ideal approach for POC analysis. Among the various microfluidic platforms available, digital microfluidics (DMF) offers high degree of configurability in manipulating μL/nL-scale liquid and achieving automation.

View Article and Find Full Text PDF

Detection of trace tumor markers in blood/serum is essential for the early screening and prognosis of cancer diseases, which requires high sensitivity and specificity of the assays and biosensors. A variety of label-free optical fiber-based biosensors has been developed and yielded great opportunities for Point-of-Care Testing (POCT) of cancer biomarkers. The fiber biosensor, however, suffers from a compromise between the responsivity and stability of the sensing signal, which would deteriorate the sensing performance.

View Article and Find Full Text PDF

Pathogenic bacteria can pose a great threat to food safety and human health. It is therefore imperative to develop a rapid, portable, and sensitive determination and discrimination method for pathogenic bacteria. Over the past few years, various nanomaterials (NMs) have been employed as desirable nanoprobes because they possess extraordinary properties that can be used for optical signal enabled detection and identification of bacteria.

View Article and Find Full Text PDF

Rapid and accurate cancer drug screening is of great importance in precision medicine. However, the limited amount of tumor biopsy samples has hindered the application of traditional drug screening methods with microwell plates for individual patients. A microfluidic system provides an ideal platform for handling trace amounts of samples.

View Article and Find Full Text PDF

A desirable lanthanide-based ratiometric fluorescent probe was designed and integrated into a self-designed Fermat spiral microfluidic chip (FS-MC) for the automated determination of a unique bacterial endospore biomarker, dipicolinic acid (DPA), with high selectivity and sensitivity. Here, a blue emission wavelength at 425 nm was generated in the Fermat spiral structure by mixing the europium (Eu) and luminol to form the Eu/Luminol sensing probe. DPA in the reservoir can be used to specifically bind to Eu under the negative pressure and transfer energy from DPA to Eu sequentially via an antenna effect, thus resulting in a significant increase in the red fluorescence emission peak at 615 nm.

View Article and Find Full Text PDF

Correction for 'Detection of airborne pathogens with single photon counting and a real-time spectrometer on microfluidics' by Ning Yang , , 2022, https://doi.org/10.1039/D2LC00934J.

View Article and Find Full Text PDF

The common practice for monitoring pathogenic bioaerosols is to collect bioaerosols from air and then detect them, which lacks timeliness and accuracy. In order to improve the detection speed, here we demonstrate an innovative airflow-based optical detection method for directly identifying aerosol pathogens, and built a microfluidic-based counter composite spectrometer detection platform, which simplifies sample preparation and collection detection from two steps to one step. The method is based on principal component analysis and partial least squares discriminant analysis for particle species identification and dynamic transmission spectroscopy analysis, and single-photon measurement is used for particle counting.

View Article and Find Full Text PDF

Chimeric antigen receptor T (CAR-T) cells are cytotoxic T cells engineered to specifically kill cancer cells expressing specific target receptor(s). Prior CAR-T efficacy tests include CAR expression analysis by qPCR or ELISA, in vitro measurement of interferon-γ (IFNγ) or interleukin-2 (IL-2), and xenograft models. However, the in vitro measurements did not reflect CAR-T cytotoxicity, whereas xenograft models are low throughput and costly.

View Article and Find Full Text PDF

Single-nucleotide polymorphism (SNP) plays a critical role in personalized medicine, forensics, pharmacogenetics, and disease diagnostics. Among different existing SNP genotyping techniques, melting curve analysis (MCA) becomes increasingly popular due to its high accuracy and straightforward procedures in extracting the melting temperature (). Yet, its study on existing digital microfluidic (DMF) platforms has intrinsic limitations due to the temperature inhomogeneity within a thickened droplet during the on-chip rapid heating process.

View Article and Find Full Text PDF

Microfluidics has been the most promising platform for drug screening with a limited number of cells. However, convenient on-chip preparation of a wide range of drug concentrations remains a large challenge and has restricted wide acceptance of microfluidics in precision medicine. In this paper, we report a digital microfluidic system with an innovative control structure and chip design for on-chip drug dispensing to generate concentrations that span three to four orders of magnitude, enabling single drug or combinatorial multi-drug screening with simple electronic control.

View Article and Find Full Text PDF

Evaluation of the cell health status is critical for drug screening and cell physiological activity investigations. The existing cell health assessment methods are solely devoted to the study of cell vitality or viability, leading to an incomplete evaluation. Herein, we report a convenient and robust method for the joint assessment of cell viability and vitality based on electric cell-substrate impedance sensing (ECIS) supplied with an environmental temperature control.

View Article and Find Full Text PDF

The emergence of the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a zoonotic pathogen, has led to the outbreak of coronavirus disease 2019 (COVID-19) pandemic and brought serious threats to public health worldwide. The gold standard method for SARS-CoV-2 detection requires both reverse transcription (RT) of the virus RNA to cDNA and then polymerase chain reaction (PCR) for the cDNA amplification, which involves multiple enzymes, multiple reactions and a complicated assay optimization process. Here, we developed a duplex-specific nuclease (DSN)-based signal amplification method for SARS-CoV-2 detection directly from the virus RNA utilizing two specific DNA probes.

View Article and Find Full Text PDF

Due to cell heterogeneity, the differences among individual cells are averaged out in bulk analysis methods, especially in the analysis of primary tumor biopsy samples from patients. To deeply understand the cell-to-cell variation in a primary tumor, single-cell culture and analysis with limited amount of cells are in high demand. Microfluidics has been an optimum platform to address the issue given its small reaction volume requirements.

View Article and Find Full Text PDF

Digital microfluidics has the potential to minimize and automate reactions in biochemical labs. However, the complexity of drop manipulation and sample preparation on-chip has limited its incorporation into daily workflow. In this paper, we report a novel method for flexible sample delivery on digital microfluidics in a wide volume range spanning four orders of magnitude from picoliters to nanoliters.

View Article and Find Full Text PDF