Publications by authors named "Yanwanjing Liu"

Nickel (Ni) is a trace element beneficial for plant growth and development and could improve crop yield by stimulating urea decomposition and nitrogen-fixing enzyme activity. A full life cycle study was conducted to compare the long-term effects of soil-applied NiO nanoparticles (n-NiO), NiO bulk (b-NiO), and NiSO at 10-200 mg kg on plant growth and nutritional content of soybean. n-NiO at 50 mg kg significantly promoted the seed yield by 39%.

View Article and Find Full Text PDF

Natural organic matter (NOM) readily interacts with nanoparticles, leading to the formation of NOM corona structures on their surface. NOM corona formation is closely related to the surface coatings and bioavailability of nanoparticles. However, the mechanism underlying NOM corona formation on silver nanoparticles (AgNPs) remains largely unknown due to the lack of effective analytical methods for identifying the changes in the AgNP surface.

View Article and Find Full Text PDF

People's desire for food has never slowed, despite the deterioration of the global agricultural environment and the threat to food security. People rely on agrochemicals to ensure normal crop growth and to relieve the existing demand pressure. Phytopathogens have acquired resistance to traditional pesticides as a result of pesticdes' abuse.

View Article and Find Full Text PDF

Zinc oxide nanoparticles (ZnO NPs) are recently recommended as food additives owing to their outstanding nutritive function. Therefore, understanding their comprehensive information and stability in food samples is highly necessitated. However, the characterization of ZnO NPs in the complex food matrices remains a great challenge, limiting an in-depth understanding of their transformation during food storage.

View Article and Find Full Text PDF

The widespread use of antibiotics has accelerated the development of antibiotic resistance genes (ARGs), which are now recognized as emerging environmental contaminants that pose a high risk to public health. In this study, simultaneous antibiotic and ARGs removal and bioelectricity generation was explored in a microbial electro-Fenton system using erythromycin (ERY) as a model antibiotic compound. The results showed that ERY could be degraded, with an average removal efficiency of 88.

View Article and Find Full Text PDF