Publications by authors named "Yanshuai Xing"

Benzotriazole (BTR) is a common corrosion inhibitor used to protect copper (Cu) and Cu alloys. To reveal the combined subacute toxicity of BTR and Cu at environmental levels on terrestrial animals, the activity of antioxidative enzymes and the glutathione levels in earthworms (Eisenia fetida) of the single or co-exposure treatments were determined. The activity of both antioxidant enzymes and non-enzymatic antioxidants was affected by BTR in earthworms.

View Article and Find Full Text PDF

Triazole contaminants in water and soil environments can form complexes with metal ions, and therefore affect the bioavailability and toxicity of some heavy metals. In present study, significant increase of copper (Cu) uptake by earthworm (Eisenia fetida) was observed when combined pollution of benzotriazole (BTR) presented in soil. For instance, Cu accumulation in earthworms increased 55% approximately when BTR presented at the BTR/Cu molar ratio of 1:2.

View Article and Find Full Text PDF

Benzotriazole (BTR), an emerging class of environmental pollutant, is widely used in industrial applications and household dishwashing agents. Despite the reported toxicity of BTR to aquatic organisms, little is known about its effects on terrestrial invertebrates. Copper (Cu) accumulates in agricultural soils receiving urban waste products, fertilizers, fungicides, and urban sewage.

View Article and Find Full Text PDF

Emerging contaminants that can complex with heavy metals might affect the speciation of coexisting metals and result in different ecological risks. As a widely used metal corrosion inhibitor, 1H-benzotriazole (BTR) is frequently detected in the environments, sometimes at very high levels. In this study, rice (Oryza sativa L.

View Article and Find Full Text PDF

As an emerging contaminant, 1-H-benzotriazole (1H-BTR) has been detected in the engineered and natural aquatic environments, which usually coexists with heavy metals and causes combined pollution. In the present study, wild-type and transgenic zebrafish Danio rerio were used to explore the acute toxicity as well as the single and joint hepatotoxicity of cadmium (Cd) and 1H-BTR. Although the acute toxicity of 1H-BTR to zebrafish was low, increased expression of liver-specific fatty acid binding protein was observed in transgenic zebrafish when the embryos were exposed to 5.

View Article and Find Full Text PDF