Smart contact lenses (SCLs) have been considered as novel wearable devices for out-of-hospital and self-monitoring applications. They are capable of non-invasively and continuously monitoring physiological signals in the eyes, including vital biophysical (e.g.
View Article and Find Full Text PDFThe dense storm microenvironment formed by an excessively cross-linked extracellular matrix, such as hyaluronic acid and collagens, serves as a major barrier that prevents drugs from reaching the deeper tumor. Current traditional two-dimensional (2D) cultures are not capable of modeling this drug delivery barrier in vitro. Thus, tumor spheroids have become increasingly important in cancer research due to their three-dimensional structure.
View Article and Find Full Text PDFPersonalized genome sequencing has revealed millions of genetic differences between individuals, but our understanding of their clinical relevance remains largely incomplete. To systematically decipher the effects of human genetic variants, we obtained whole-genome sequencing data for 809 individuals from 233 primate species and identified 4.3 million common protein-altering variants with orthologs in humans.
View Article and Find Full Text PDFUnlabelled: Personalized genome sequencing has revealed millions of genetic differences between individuals, but our understanding of their clinical relevance remains largely incomplete. To systematically decipher the effects of human genetic variants, we obtained whole genome sequencing data for 809 individuals from 233 primate species, and identified 4.3 million common protein-altering variants with orthologs in human.
View Article and Find Full Text PDF144Three-dimensional (3D) bioprinting has become a promising approach to constructing functional biomimetic tissues for tissue engineering and regenerative medicine. In 3D bioprinting, bio-inks are essential for the construction of cell microenvironment, thus affecting the biomimetic design and regenerative efficiency. Mechanical properties are one of the essential aspects of microenvironment, which can be characterized by matrix stiffness, viscoelasticity, topography, and dynamic mechanical stimulation.
View Article and Find Full Text PDFPostoperative adhesions occur widely in various tissues, bringing the risk of secondary surgery and increased medical burden. Hydrogel barriers with Janus-adhesive ability can achieve physical isolation of adjacent tissues and are therefore considered an ideal solution. However, integrating endoscopic delivery convenience and viscoelastic Janus hydrogel formation remains a great challenge.
View Article and Find Full Text PDFDe novo motif discovery in biological sequences is an important and computationally challenging problem. A myriad of algorithms have been developed to solve this problem with varying success, but it can be difficult for even a small number of these tools to reach a consensus. Because individual tools can be better suited for specific scenarios, an ensemble tool that combines the results of many algorithms can yield a more confident and complete result.
View Article and Find Full Text PDFStrong exciton-photon coupling is the result of a reversible exchange of energy between an excited state and a confined optical field. This results in the formation of polariton states that have energies different from the exciton and photon. We demonstrate strong exciton-photon coupling between light-harvesting complexes and a confined optical mode within a metallic optical microcavity.
View Article and Find Full Text PDFGreen sulfur bacteria, which live in extremely low-light environments, use chlorosomes to harvest light. A chlorosome is the most efficient, and arguably the simplest, light-harvesting antenna complex, which contains hundreds of thousands of densely packed bacteriochlorophylls (BChls). To harvest light efficiently, BChls in a chlorosome form supramolecular aggregates; thus, it is of great interest to determine the organization of the BChls in a chlorosome.
View Article and Find Full Text PDFAccumulating research has shown that chronic D-galactose (D-gal) exposure induces symptoms similar to natural aging in animals. Therefore, rodents chronically exposed to D-gal are increasingly used as a model for aging and delay-of-aging pharmacological research. Mitochondrial dysfunction is thought to play a vital role in aging and age-related diseases; however, whether mitochondrial dysfunction plays a significant role in mice exposed to D-gal remains unknown.
View Article and Find Full Text PDFBiofabrication
September 2013
The unique benefit of electrostatic self-assembly of microscale components in solution is demonstrated for the first time. In particular, positive and negative treatment of poly(ethylene glycol) (PEG) facilitates a novel bottom-up assembly approach using electrostatic interaction from microgels with opposite charges. Fundamental investigations of electrostatic interaction of microgels reveal that the contact area of microgels determines the total energy of construct and thus the final patterns.
View Article and Find Full Text PDF