Publications by authors named "Yanru Ji"

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Background: Alzheimer's disease (AD) is the leading cause of dementia, affecting 50 million people globally. Current AD animal models mainly focus on familial or inherited AD. These models often carry the APP and PSEN gene mutations from familial AD patients, or introduce microtubule-associated protein tau (MAPT) mutations, which can cause frontotemporal dementia but are not linked to AD.

View Article and Find Full Text PDF

Organosilane compounds are widely used in both organic synthesis and materials science. Particularly, 1,2-disilylated and -disilylated alkenes, characterized by a carbon-carbon double bond and multiple silyl groups, exhibit significant potential for subsequently diverse transformations. The versatility of these compounds renders them highly promising for applications in materials, enabling them to be valuable and versatile building blocks in organic synthesis.

View Article and Find Full Text PDF

Human pluripotent stem cell (hPSC) models provide unprecedented opportunities to study human neurological disorders by recapitulating human-specific disease mechanisms. In particular, hPSC-based human-animal brain chimeras enable the study of human cell pathophysiology in vivo. In chimeric brains, human neural and immune cells can maintain human-specific features, undergo maturation, and functionally integrate into host brains, allowing scientists to study how human cells impact neural circuits and animal behaviors.

View Article and Find Full Text PDF

The binding of talin-F0 domain to ras-related protein 1b (Rap1b) plays an important role in the formation of thrombosis. However, since talin is a force-sensitive protein, it remains unclear whether and how force regulates the talin-F0/Rap1b interaction. To explore the effect of force on the binding affinity and the dynamics mechanisms of talin-F0/Rap1b, molecular dynamics simulation was used to observe and compare the changes in functional and conformational information of the complex under different forces.

View Article and Find Full Text PDF

Activation of integrins is crucial for recruitment of flowing leukocytes to inflammatory or injured vascular sites, but their spatiotemporal characteristics are incompletely understood. We discovered that β-integrin activation over the entire surface of neutrophils on immobilized P-selectin occurred mitogen-activated protein kinase (MAPK) or non-MAPK signaling with a minute-level timescale in a force-dependent manner. In flow, MAPK signaling required intracellular Ca release to activate integrin within 2 min.

View Article and Find Full Text PDF

Integrin activation is a predominant step for cell-cell and cell-ECM interactions. Talin and Kindlin are mechanosensitive adaptor proteins that bind to the integrin cytoplasmic tail and mediate integrin activation, cytoskeleton rearrangement, and focal adhesion assembly. However, knowledge about how Talin and Kindlin synergistically assist integrin activation remains unclear.

View Article and Find Full Text PDF

Purpose: Atherosclerosis causes plaque to build-up in arteries. Effect of the specific local hemodynamic environment around an atherosclerotic plaque on the thrombosis formation does not remain quite clear but is believed to be crucial. The aim of this study is to uncover the flow effects on plaques formation.

View Article and Find Full Text PDF

Foodborne protein hydrolysates exhibit biological activity that may be therapeutic in a number of human disease settings. Hemp peptides (HP) generated by controlled hydrolysis of hemp proteins have a number of health benefits and are of pharmaceutical value. In the present study, we produce small molecular weight HP from hemp seed and investigate its anticancer properties in Hep3B human liver cancer cells.

View Article and Find Full Text PDF