Publications by authors named "Yanran Qi"

Traditional wood-polymer composite (WPC) based on the in situ polymerization of ethylene unsaturated monomers in the cellular cavity of wood is significant for the high-value-added utilization of low-quality wood. However, this type of WPC has the problems of volatile monomers, low conversion rates, odor residue, and poor compatibility between the polymer and wood interface, which hinder its promotion and application. In this study, a two-step process of cell wall bulking in combination with cell lumen filling was prepared to modify wood using Maleic anhydride (MAN) as the bulking agent and GMA-EGDMA (molar ratio 2:1) as the active monomer system.

View Article and Find Full Text PDF

Waterborne polyurethane coatings (WPU) are widely used in various types of coatings due to their environmental friendliness, rich gloss, and strong adhesion. However, their inferior mechanical properties and solvent resistance limit their application on the surface of wood products. In this study, graphene oxide (GO) with nanoscale size, large surface area, and abundant functional groups was incorporated into WPU by chemical grafting to improve the dispersion of GO in WPU, resulting in excellent mechanical properties and solvent resistance of WPU coatings.

View Article and Find Full Text PDF

Water-based polyurethane paint is widely used for wood furniture by virtue of the eco-friendliness, rich gloss, and flexible tailorability of its mechanical properties. However, its low solution (water or alcohol) resistance and poor hardness and wear resistance limit its application. The emerging graphene oxide has a high specific surface area and abundant functional groups with excellent mechanical properties, endowing it with great potential to modify waterborne polyurethane as a nanofiller.

View Article and Find Full Text PDF
Article Synopsis
  • * Fast-growing poplar wood faces limitations in strength and stability, but a new acrylic resin system has been developed to fill its cavities, enhancing its properties for construction.
  • * The treated poplar laminated veneer lumber showed significant improvements in mechanical strength and stability, surpassing the required standards for structural timber, offering a promising use for poplar wood in high-value construction applications.
View Article and Find Full Text PDF

Fast-growing poplar wood has the bottleneck problems of inferior mechanical strength and poor dimensional stability. In this study, the wood was modified by combined treatments of pre-compression and post-vacuum-thermo modification to improve its mechanical strength and dimensional stability, simultaneously; in addition, the variation law of mechanical properties of the wood with compression ratio as well as the improvement effect of dimensional stability of the treated wood were mainly studied. The results show that the optimal temperature and time of the vacuum-thermo modification were 190 °C and 10 h, respectively.

View Article and Find Full Text PDF

The mold infection of wood reduces the quality of its surface and potentially endangers human health. One category of the most popular mold inhibitors on the market is water-soluble fungicides. However, easy leaching due to ionic forms is a problem, which reduces the effectiveness of their antimicrobial action, as well as causing environmental pollution.

View Article and Find Full Text PDF

Water-based antimicrobial agents, used in environmentally friendly applications, are widely used in wood protection industries. Furthermore, nanomaterials as antimicrobial agents, because of their biocidal component, huge specific surface area, and unique nanoscale effect, have attracted attention in the field of biodurability. We employed aqueous dispersed nano-silver with a diameter of 10 nm~20 nm to treat poplar wood and evaluated its leaching resistance and anti-mold effect on the wood surface.

View Article and Find Full Text PDF

Petroleum-based plastics, such as PP, PE, PVC, etc., have become an important source of environmental pollution due to their hard degradation, posing a serious threat to the human health. Isolating nanocellulose from abundant biomass waste resources and further integrating the nanocellulose into hydrophobic transparent film (i.

View Article and Find Full Text PDF

The aims of this work were to investigate the antioxidant, anti-hyperlipidemia and hepatic protection of Morehella esculenta polysaccharide (MPS) from fruiting body and its enzyme-assisted MPS (EnMPS). The in vitro scavenging rates of EnMPS at 600 mg/L on superoxide, hydroxyl and 1,1‑diphenyl‑2‑pyrazole hydrazide (DPPH) radicals were 76.92 ± 2.

View Article and Find Full Text PDF

The present work investigated the antioxidative, anti-inflammatory and organ protective effects of residue polysaccharide (RPS) and its enzymatic-RPS (ERPS) of Lentinula edodes against the LPS-induced sepsis in mice. The results demonstrated that ERPS showed superior effects on inhibiting serum activities of CKMB, LDH, AST, ALP and ALT, lowing the serum levels of BUN, CRE and UA, as well as improving the antioxidant status (SOD, CAT, GSH-P and T-AOC) than RPS. Moreover, the levels of TNF-α (667.

View Article and Find Full Text PDF