Publications by authors named "Yanqiong Kong"

Nicotinamide phosphoribosyltransferase (NAMPT) plays an important role in the biosynthesis of nicotinamide adenine dinucleotide (NAD) via the nicotinamide (NAM) salvage pathway. While the structural biochemistry of eukaryote NAMPT has been well studied, the catalysis mechanism of prokaryote NAMPT at the molecular level remains largely unclear. Here, we demonstrated the NAMPT-mediated salvage pathway is functional in the Gram-negative phytopathogenic bacterium Xanthomonas campestris pv.

View Article and Find Full Text PDF

The receptor-like kinase FLAGELLIN-SENSITIVE 2 (FLS2) functions as a bacterial flagellin receptor localized on the cell membrane of plants. In Arabidopsis, the co-receptor BRI1-ASSOCIATED RECEPTOR KINASE 1 (BAK1) cooperates with FLS2 to detect the flagellin epitope flg22, resulting in formation of a signaling complex that triggers plant defense responses. However, the co-receptor responsible for recognizing and signaling the flg22 epitope in rice remains to be determined, and the precise structural mechanism underlying FLS2-mediated signal activation and transduction has not been clarified.

View Article and Find Full Text PDF

Accumulating evidence indicates that early and essential events for receptor-like kinase (RLK) function involve both autophosphorylation and substrate phosphorylation. However, the structural and biochemical basis for these events is largely unclear. Here, we used RLK FERONIA (FER) as a model and crystallized its core kinase domain (FER-KD) and two FER-KD mutants (K565R, S525A) in complexes with ATP/ADP and Mg in the unphosphorylated state.

View Article and Find Full Text PDF

Deciphering the complex cellular behaviours and advancing the biotechnology applications of filamentous fungi increase the requirement for genetically manipulating a large number of target genes. The current strategies cannot cyclically coedit multiple genes simultaneously. In this study, we firstly revealed the existence of diverse homologous recombination (HR) types in marker-free editing of filamentous fungi, and then, demonstrated that sgRNA efficiency-mediated competitive inhibition resulted in the low integration of multiple genetic sites during coediting, which are the two major obstacles to limit the efficiency of cyclically coediting of multiple genes.

View Article and Find Full Text PDF

Transmembrane kinases (TMKs) are members of the plant receptor-like kinase (RLK) family. TMKs are characterized by an extracellular leucine-rich-repeat (LRR) domain, a single transmembrane region and a cytoplasmic kinase domain. TMKs have been shown to act as critical modulators of cell expansion and cell proliferation.

View Article and Find Full Text PDF

Xylanase with a high thermostability will satisfy the needs of raising the temperature of hydrolysis to improve the rheology of the broth in industry of biomass conversion. In this study, a xylanase gene (xyn10A), predicted to encode a hydrolase domain of GH10, a linker region and a CBM1 domain, was cloned from a superior lignocellulose degrading strain Aspergillus fumigatus Z5 and successfully expressed in Pichia pastoris X33. Xyn10A has a specific xylanase activity of 34.

View Article and Find Full Text PDF