Publications by authors named "Yanqing Fu"

Wearable thermoelectric (TE)-based temperature sensors capable of detecting and transmitting temperature data from the human body and environment show promise in intelligent medical systems, human-machine interfaces, and electronic skins. However, it has remained a challenge to fabricate the flexible temperature sensors with superior sensing performance, primarily due to the low Seebeck coefficient of the TE materials. Here, we report an inorganic amorphous TE material, GeAsTe, with a high Seebeck coefficient of 1050 μV/K, which is around 3 times higher than the organic TE materials and 2 times higher than the inorganic crystal TE materials.

View Article and Find Full Text PDF

Currently, one major target for exploring K-ion batteries (KIBs) is enhancing their cycle stability due to the intrinsically sluggish kinetics of large-radius K ions. Herein, we report a rationally designed electrode, the S/O co-doped hard carbon spheres with highly ordered porous characteristics (SPC), for extremely durable KIBs. Experimental results and theory calculations confirm that this structure offers exceptional advantages for high-performance KIBs, facilitating rapid K diffusion and (de)-intercalation, efficient electrolyte penetration and transport, improved K storage sites, and enhanced redox reaction kinetics, thus ensuring the long-term cycle stability.

View Article and Find Full Text PDF

In this study, widely targeted metabolomics and chemometrics were utilized to comprehensively analyse the formation of taste compounds in Longjing green tea. A total of 580 non-volatile metabolites were identified by using ultra-performance liquid chromatography-electrospray ionization-tandem mass spectrometry, and alterations in three metabolic pathways were investigated. Notably, the fixation process reduced phosphatidic acid levels, resulting in the formation of lyso-phosphatidylcholine and lyso-phosphatidylethanolamine, as well as the release of esterified polyunsaturated fatty acids.

View Article and Find Full Text PDF

Currently, a major target in the development of Na-ion batteries is the concurrent attainment of high-rate capacity and long cycling stability. Herein, an advanced Na-ion battery with high-rate capability and long cycle stability based on Li/Ti co-doped P2-type NaMnNiO, a host material with high-voltage zero-phase transition behavior and fast Na migration/conductivity during dynamic de-embedding process, is constructed. Experimental results and theoretical calculations reveal that the two-element doping strategy promotes a mutually reinforcing effect, which greatly facilitates the transfer capability of Na.

View Article and Find Full Text PDF

Skin-like thermoelectric (TE) films with temperature- and strain-sensing functions are highly desirable for human-machine interaction systems and wearable devices. However, current TE films still face challenges in achieving high flexibility and excellent sensing performance simultaneously. Herein, for the first time, a facile roll-to-roll strategy is proposed to fabricate an ultraflexible chalcogenide glass-polytetrafluoroethylene composite film with superior temperature- and strain-sensing performance.

View Article and Find Full Text PDF

Wearable thermal sensors based on thermoelectric (TE) materials with high sensitivity and temperature resolution are extensively used in medical diagnosis, human-machine interfaces, and advanced artificial intelligence. However, their development is greatly limited by the lack of materials with both a high Seebeck coefficient and superior anticrystallization ability. Here, a new inorganic amorphous TE material, GeGaTe, with a high Seebeck coefficient of 1109 μV/K is reported.

View Article and Find Full Text PDF

Many women are experiencing postpartum depression (PPD) after giving birth. How to recognize and intervene in high-risk PPD women early and effectively remains unknown. Our objective is to describe the latent trajectory groups of cognitive reactivity (CR) in perinatal women, and their relationship to demographic and disease-related factors, as well as investigate the associations with PPD.

View Article and Find Full Text PDF

The development of low-cost single-atom electrocatalysts for oxygen reduction reaction (ORR) is highly desired but remains a grand challenge. Superior to the conventional techniques, a microwave-assisted strategy is reported for rapid production of high-quality Fe/N/C single-atom catalysts (SACs) with profoundly enhanced reaction rate and remarkably reduced energy consumption. The as-synthesized catalysts exhibit an excellent ORR performance with a positive half-wave potential up to 0.

View Article and Find Full Text PDF

Fiber-based inorganic thermoelectric (TE) devices, owing to the small size, light-weight, flexibility, and high TE performance, are promising for applications in flexible thermoelectrics. Unfortunately, current inorganic TE fibers are strictly constrained by limited mechanical freedom because of the undesirable tensile strain, typically limited to a value of 1.5%, posing a strong obstacle for further application in large-scale wearable systems.

View Article and Find Full Text PDF

Background: It is critical to find optimal forms to identify perinatal depression (PND) and its vulnerable factors and make them more applicable to depression screening. This study aims to evaluate the reliability and validity of the Chinese version of the Leiden Index of Depression Sensitivity (LEIDS-RR-CV) among perinatal women in China and determine the cut-off values for screening for high-risk depression.

Methods: Women in their third trimester of pregnancy and six weeks postpartum completed the LEIDS-RR-CV and a diagnostic reference standard online.

View Article and Find Full Text PDF

Volatile organic compounds (VOCs) are produced by plants responding to biotic and abiotic stresses. According to their biosynthetic sources, induced VOCs are divided into three major classes: terpenoids, phenylpropanoid/benzenoid, and fatty acid derivatives. These compounds with specific aroma characteristics importantly contribute to the aroma quality of oolong tea.

View Article and Find Full Text PDF

Tieguanyin (TGY) is one kind of oolong tea that is widely appreciated for its aroma and taste. To study the difference of volatile compounds among different types of TGY and other oolong teas, solid-phase microextraction−gas chromatography−mass spectrometry and chemometrics analysis were conducted in this experiment. Based on variable importance in projection > 1 and aroma character impact > 1, the contents of heptanal (1.

View Article and Find Full Text PDF

Seven batches of raw tea leaves, processed by different methods (steaming, pan-frying) and from two different harvesting seasons (spring, autumn), were used to investigate the effect of baking treatment on changes in the composition and content of nonvolatile and volatile compounds. The results showed that baking had a greater impact on sensory and flavor quality, which chemically modified some of taste and aroma components. The aroma concentrations of steamed teas (4,168-10,706 μg/L) were significantly higher than those of pan-fried teas (959-2,608 μg/L), and the aroma concentrations of baked green teas (2,608-10,706 μg/L) were significantly higher than those of unbaked teas (959-4,213 μg/L).

View Article and Find Full Text PDF

Oral processing (OP), referring to the whole process of food digestion in human mouth, has a major influence on food flavor perception. This study focused on the compositional changes of the four green tea epicatechins (viz., EC, EGC, ECG, EGCG) during OP, based on targeted and nontargeted metabolomics.

View Article and Find Full Text PDF

Roasting, a critical process for oolong tea, has been applied to tea to improve flavor attributes. To investigate the effects of the roasting on the flavor of , the global metabolomics analysis on the non-volatile and volatile components were proceeded. The weakening of bitterness and astringency, caused by roasting, may be attributed to the decreasing of flavonoids glycosides and procyanidins, whereas the enhancing of sweet aftertaste to the increasing of gallic acid.

View Article and Find Full Text PDF

Zijuan tea is a representative anthocyanin-rich tea cultivar in China. In this study, Zijuan tea was used to produce a novel kombucha beverage (ZTK). The physicochemical, sensory properties, and antioxidant activity of ZTK were compared with that of black tea kombucha (BTK) and green tea kombucha (GTK).

View Article and Find Full Text PDF

Milky tea is popular in many countries and its color is an important sensory property. The effects of black tea infusion on the color of milky tea prepared with non-dairy creamer were investigated. The results showed that the redder black tea infusion produced milky tea with more redness, and the color of milky tea was a pleasant pink when the a* value (redness indicator) was in the range of 6.

View Article and Find Full Text PDF

Flavor stability is important for the quality of tea beverages. Baking is a typical processing technology to improve the flavor of tea leaves. In present study, seven raw tea materials, including steamed spring and autumn tea leaves, pan-fired spring tea leaves, and their corresponding baked tea leaves, were used to investigate the effect of baking on flavor stability of green tea beverages.

View Article and Find Full Text PDF

Castanopsis lamontii is used as functional herbal tea in southwest China. Usually, only buds rather than mature leaves are applied. To figure out whether mature leaves were suitable for producing herbal tea, chemical composition, sensory properties and bioactivities of Castanopsis lamontii bud infusion (CLB) and mature leaf infusion (CLM) were investigated.

View Article and Find Full Text PDF

In this work, we investigated three types of graphene (i.e., home-made G, G V4, and G V20) with different size and morphology, as additives to a lithium iron phosphate (LFP) cathode for the lithium-ion battery.

View Article and Find Full Text PDF

Nontargeted analysis is a useful strategy for the discovery of unknown risk compounds. However, how to rapidly screen and determine risk substances is still a big challenge. In this study based on high-performance liquid chromatography (HPLC)-high resolution mass spectrometry (HRMS), a strategy for the rapid screening and determination of risk substances was established.

View Article and Find Full Text PDF

A novel, magnetic and mesoporous FeO@PEI-MOF-5 material was synthesized for the effective enrichment of malachite green (MG) and crystal violet (CV) in fish samples. The FeO@PEI-MOF-5 material was prepared by a facile two-step solvothermal approach in which FeO@PEI and MOF-5 were connected through chemical bonds. Characterization of the newly synthesized FeO@PEI-MOF-5 material was performed by Fourier transform infrared spectroscopy, X-ray diffractometry, vibrating sample magnetometry, scanning electron microscopy, transmission electron microscopy, thermogravimetric analysis and X-ray photoelectron spectroscopy.

View Article and Find Full Text PDF

Echolocating bats can rapidly modify frequency modulation (FM) curvatures of their calls when facing challenging echolocation tasks. Frequency parameters, such as start/end/peak frequency, have often been extracted from the time-frequency domain to study the call variation. Even though this kind of signal investigation method reveals important findings, these approaches to analyze bat echolocation calls use bulk parameters, which hide subtleties in the call structure that may be important to the bat.

View Article and Find Full Text PDF

Horseshoe bats have dynamic biosonar systems with interfaces for ultrasonic emission (reception) that change shape while diffracting the outgoing (incoming) sound waves. An information-theoretic analysis based on numerical and physical prototypes shows that these shape changes add sensory information (mutual information between distant shape conformations <20%), increase the number of resolvable directions of sound incidence, and improve the accuracy of direction finding. These results demonstrate that horseshoe bats have a highly effective substrate for dynamic encoding of sensory information.

View Article and Find Full Text PDF