Publications by authors named "Yanqing An"

Accelerated melting of mountain glaciers due to global warming has a significant impact on downstream biogeochemical evolution because a large amount of labile dissolved organic matter (DOM) is released. However, the DOM evolution processes from glacier to downstream are not well understood. To investigate these processes, samples from the glacial surface and terminating runoff of a mountain glacier on the Tibetan Plateau were collected simultaneously throughout the melting season.

View Article and Find Full Text PDF

The metamorphism of snow (snowmelt process) has a potential influence on chemical and physical process occurring within it. This study carried out a detailed study on the variation of dissolved organic matter (DOM) in different stages of snowmelt in a typical mountain glacier located at Tibetan Plateau through collecting four different surface snow/ice categories, i.e.

View Article and Find Full Text PDF

A novel host lattice disodium calcium ditin(IV) trigermanium oxide Na2CaSn2Ge3O12 was utilized for synthesizing long-persistent phosphorescence materials for the first time. Reddish orange long-persistent phosphorescence was observed in Na2CaSn2Ge3O12:Sm(3+) phosphors with persistence time more than 4.8 h.

View Article and Find Full Text PDF

Highly ordered mesoporous CdS nanowire arrays were synthesized by using mesoporous silica as hard template and cadmium xanthate (CdR(2)) as a single precursor. Upon etching silica, mesoporous CdS nanowire arrays were produced with a yield as high as 93 wt%. The nanowire arrays were characterized by XRD, N(2) adsorption, TEM, and SEM.

View Article and Find Full Text PDF

A simple method for the fabrication of silica nanoparticle film based on the covalent-bonding interaction between carboxylic acid-functionalized silica nanoparticles (SiO(2)-COOH) and amino-terminated silicon wafer was developed. Prior to assembly, silica nanoparticles with an average diameter 80 nm were prepared using the Stöber method, amino-functionalized silica nanoparticles (SiO(2)-NH(2)) were prepared by a silanization with 3-aminopropyltriethoxysilane (APTES), while carboxylic acid-functionalized silica nanoparticles (SiO(2)-COOH) were prepared by a ring opening linker elongation reaction of the amine functions with succinic anhydride, at the same time, amino-terminated silicon wafer (Si-NH(2)) was obtained by self-assembling 3-aminopropyltriethoxysilane, then one layer relative close-packed carboxylic acid-functionalized silica nanoparticles (SiO(2)-COOH) was arranged on silicon wafer through amidation reaction under DCC coupling agent.

View Article and Find Full Text PDF