The HSP70 co-chaperone BAG3 targets unfolded proteins to degradation via chaperone assisted selective autophagy (CASA), thereby playing pivotal roles in the proteostasis of adult cardiomyocytes (CMs). However, the complex functions of BAG3 for regulating autophagy in cardiac disease are not completely understood. Here, we demonstrate that conditional inactivation of Bag3 in murine CMs leads to age-dependent dysregulation of autophagy, associated with progressive cardiomyopathy.
View Article and Find Full Text PDFBackground: Adult mammalian cardiomyocytes have limited proliferative capacity, but in specifically induced contexts they traverse through cell-cycle reentry, offering the potential for heart regeneration. Endogenous cardiomyocyte proliferation is preceded by cardiomyocyte dedifferentiation (CMDD), wherein adult cardiomyocytes revert to a less matured state that is distinct from the classical myocardial fetal stress gene response associated with heart failure. However, very little is known about CMDD as a defined cardiomyocyte cell state in transition.
View Article and Find Full Text PDFIn mice, exit from the totipotent two-cell (2C) stage embryo requires silencing of the 2C-associated transcriptional program. However, the molecular mechanisms involved in this process remain poorly understood. Here we demonstrate that the 2C-specific transcription factor double homeobox protein (DUX) mediates an essential negative feedback loop by inducing the expression of DUXBL to promote this silencing.
View Article and Find Full Text PDFMethylation reaction is a fundamental chemical reaction that plays an important role in the modification of drug molecules, DNA, as well as proteins. This work focuses on seeking potential novel methylation reagents through a systematic investigation of the thermodynamics and reactivity of methyl-substituted organic hydride radical cations (XHs). In this work, 45 classical and important XHs were designed to investigate the relationship between their structure and reactivity, to find excellent or potential methylation reagents.
View Article and Find Full Text PDFCardiomyocyte (CM) replacement is very slow in adult mammalian hearts, preventing regeneration of damaged myocardium. By contrast, fetal hearts display considerable regenerative potential owing to the presence of less mature CMs that still have the ability to proliferate. In this study, we demonstrate that heart-specific expression of Oct4, Sox2, Klf4, and c-Myc (OSKM) induces adult CMs to dedifferentiate, conferring regenerative capacity to adult hearts.
View Article and Find Full Text PDFTranscription factor-driven cell fate engineering in pluripotency induction, transdifferentiation, and forward reprogramming requires efficiency, speed, and maturity for widespread adoption and clinical translation. Here, we used Oct4, Sox2, Klf4, and c-Myc driven pluripotency reprogramming to evaluate methods for enhancing and tailoring cell fate transitions, through directed evolution with iterative screening of pooled mutant libraries and phenotypic selection. We identified an artificially evolved and enhanced POU factor (ePOU) that substantially outperforms wild-type Oct4 in terms of reprogramming speed and efficiency.
View Article and Find Full Text PDFSome transcription factors that specifically bind double-stranded DNA appear to also function as RNA-binding proteins. Here, we demonstrate that the transcription factor Sox2 is able to directly bind RNA in vitro as well as in mouse and human cells. Sox2 targets RNA via a 60-amino-acid RNA binding motif (RBM) positioned C-terminally of the DNA binding high mobility group (HMG) box.
View Article and Find Full Text PDFOct4, along with Sox2 and Klf4 (SK), can induce pluripotency but structurally similar factors like Oct6 cannot. To decode why Oct4 has this unique ability, we compare Oct4-binding, accessibility patterns and transcriptional waves with Oct6 and an Oct4 mutant defective in the dimerization with Sox2 (Oct4). We find that initial silencing of the somatic program proceeds indistinguishably with or without Oct4.
View Article and Find Full Text PDFThe transcription factor Oct4 is a core component of molecular cocktails inducing pluripotent stem cells (iPSCs), while other members of the POU family cannot replace Oct4 with comparable efficiency. Rather, group III POU factors such as Oct6 induce neural lineages. Here, we sought to identify molecular features determining the differential DNA-binding and reprogramming activity of Oct4 and Oct6.
View Article and Find Full Text PDFHalohydrin dehalogenase from Agrobacterium radiobacter AD1 (HheC) shows great potential in producing valuable chiral epoxides and β-substituted alcohols. The wild-type (WT) enzyme displays a high R-enantiopreference toward most aromatic substrates, whereas no S-selective HheC has been reported to date. To obtain more enantioselective enzymes, seven noncatalytic active-site residues were subjected to iterative saturation mutagenesis (ISM).
View Article and Find Full Text PDF