Publications by authors named "Yanping Ni"

Vertically stacked all-organic active-matrix organic light-emitting diodes are promising candidates for high-quality skin-like displays due to their high aperture ratio, extreme mechanical flexibility, and low-temperature processing ability. However, these displays suffer from process interferences when interconnecting functional layers made of all-organic materials. To overcome this challenge, we present an innovative integration strategy called "discrete preparation-multilayer lamination" based on microelectronic processes.

View Article and Find Full Text PDF

With the rapid advances in imperceptible and epidermal electronics, the research on ultraflexible organic light-emitting diodes (OLEDs) has become increasingly significant, owing to their excellent flexibility and conformability to the human body. It is highly desirable to develop submicrometer-thick ultraflexible OLEDs to enable the devices to seamlessly conform to the surface of arbitrary-shaped objects and still function properly. However, it remains a huge challenge for currently reported OLEDs due to the lack of an appropriate stripping strategy.

View Article and Find Full Text PDF

Indacenodithiophene-benzothiadiazole (IDT-BT) has emerged as one of the most promising candidates for stretchable electronics due to its good stretchability and high mobility. Here, we present an air/liquid interface self-assembly method for the stretchable IDT-BT films and design an air-side transfer adherence strategy for improving the carrier mobility of IDT-BT. By controlling the cosolvent ratio in solution and the solvent evaporation rate, the large-scale intrinsically stretchable IDT-BT film with the diameter as high as ∼3 cm was self-assembled at the air/liquid interface.

View Article and Find Full Text PDF

Inspired by human eyes, the neuromorphic visual system employs a highly efficient imaging and recognition process, which offers tremendous advantages in image acquisition, data pre-processing, and dynamic storage. However, it is still an enormous challenge to simultaneously simulate the structure, function, and environmental adaptive behavior of the human eye based on one device. Here, a multimodal-synergistic-modulation neuromorphic imaging system based on ultraflexible synaptic transistors is successfully presented and firstly simulates the dry eye imaging behavior at the device level.

View Article and Find Full Text PDF

Biodegradable organic field-effect transistors (OFETs) have drawn tremendous attention for potential applications such as green electronic skins, degradable flexible displays, and novel implantable devices. However, it remains a huge challenge to simultaneously achieve high mobility, stable operation and controllable biodegradation of OFETs, because most of the widely used biodegradable insulating materials contain large amounts of hydrophilic groups. Herein, it is firstly proposed fungal-degradation ultraflexible OFETs based on the crosslinked dextran (C-dextran) as dielectric layer.

View Article and Find Full Text PDF

High-mobility polymer field-effect transistors (PFETs) are being actively explored for applications in soft electronic skin and low-cost flexible displays because of their superior solution processability, mechanical flexibility, and stretchability. However, most of high-mobility PFETs often deviate from the idealized behavior with variable mobility, large threshold voltage, and high off-state current, which masks their intrinsic properties and significantly impedes their practical applications. Here, it is first revealed that interface strain between polymer thin film and rigid substrate plays a crucial role in determining the ideality of PFETs, and demonstrate that various ideal conformable PFETs can be successfully fabricated by releasing strain.

View Article and Find Full Text PDF

Organic thin-film transistors (OTFTs) are identified to be the most promising candidate for next-generation wearable and implantable electronics because of their unique advantages including their flexibility, low cost, long-term biocompatibility, and simple packaging. However, commercialization of organic transistors remains an enormous challenge due to their low mobility and lack of scalable strategy for high-precise soft devices. Here, a novel photolithography fabrication strategy is proposed, which is completely compatible with various commercial organic semiconductor materials, for the first demonstration of the fully photolithographic top-contact conformable OTFTs with the device density as high as 1523 transistors cm.

View Article and Find Full Text PDF

The 2003 SARS pandemic heralded the return of quarantine as a vital part of twenty-first century public health practice. Over the last two decades, MERS, Ebola, and other emerging infectious diseases each posed unique challenges for applying quarantine ethics lessons learned from the 2003 SARS-CoV-1 outbreak. In an increasingly interdependent and connected global world, the use of quarantine to contain the spread of SARS-CoV-2, or COVID-19, similarly poses new and unexpected ethical challenges.

View Article and Find Full Text PDF

Objectives: Trimetazidine is an anti-ischemic medication licensed for the treatment of angina pectoris. However, the molecular mechanisms underlying its action remain incompletely elucidated. In this study, therefore, we examined the potential beneficial effects of trimetazidine on myocardial injury and endothelial dysfunction in patients with unstable angina in the perioperative period of percutaneous coronary intervention (PCI).

View Article and Find Full Text PDF

This study was to investigate the effects of microRNA-21 (miR-21) on ox-LDL-induced HUVECs apoptosis. MTT assay was performed to evaluate the proliferation of HUVECs. Quantitative RT-PCR was conducted to quantify the expression of miR-21.

View Article and Find Full Text PDF

Guanmaitong (GMT) is a traditional Chinese herbal compound that has been used for the treatment of coronary heart disease (CHD) and other cardiovascular diseases. However, the efficacy of GMT in treating cardiovascular diseases remains unclear. The aim of the present study was to investigate the protective mechanisms and identify the targeted proteins and signaling networks associated with the physiological activity of GMT in a rat model of acute myocardial infarction (AMI).

View Article and Find Full Text PDF