Publications by authors named "Yanpeng Suo"

High-temperature furnaces and coal-fired boilers are widely employed in the petrochemical and metal-smelting sectors. Over time, the deterioration, corrosion, and wear of pipelines can lead to equipment malfunctions and safety incidents. Nevertheless, effective real-time monitoring of equipment conditions remains insufficient, primarily due to the interference caused by flames generated from fuel combustion.

View Article and Find Full Text PDF

The electrochemical reaction kinetics, especially the oxygen reduction reaction (ORR) at the cathode, is crucial for the performance of a fuel cell. In this study, the electrochemical processes on a polycrystalline Pt electrode in the presence of protic ionic liquid (PIL) electrolyte diethylmethylammonium triflate [Dema][TfO] are investigated by means of cyclic voltammetry and electrochemical impedance spectroscopy. Since water is continually produced during fuel cell operation, the effect of the water content in the PIL has been intensively analyzed.

View Article and Find Full Text PDF

The cell performance and durability of polymer electrolyte membrane (PEM) water electrolyzers are limited by the surface passivation of titanium-based porous transport layers (PTLs). In order to ensure stable performance profiles over time, large amounts (≥1 mg·cm) of noble metals (Au, Pt, Ir) are most widely used to coat titanium-based PTLs. However, their high cost is still a major obstacle toward commercialization and widespread application.

View Article and Find Full Text PDF

Correction for 'Influence of residual water and cation acidity on the ionic transport mechanism in proton-conducting ionic liquids' by Jingjing Lin et al., Phys. Chem.

View Article and Find Full Text PDF

Proton-conducting ionic liquids (PILs) are discussed herein as potential new electrolytes for polymer membrane fuel cells, suitable for operation temperatures above 100 °C. During fuel cell operation, the presence of significant amounts of residual water is unavoidable, even at these elevated temperatures. By using electrochemical and NMR methods, the impact of residual water on 2-sulfoethylmethylammonium triflate [2-Sema][TfO], 1-ethylimidazolium triflate [1-EIm][TfO] and diethylmethylammonium triflate [Dema][TfO] is analyzed.

View Article and Find Full Text PDF