Circulating endothelial cells (CEC) are thought to be markers of endothelial injury. We hypothesized that the numbers of CEC may provide a novel means for predicting long-term survival and cardiovascular events in hemodialysis patients. 54 hemodialysis patients underwent enumeration of their CEC number.
View Article and Find Full Text PDFBone fractures are associated with considerable morbidity and increased mortality. A major limitation to healing is lack of bone blood flow, which is impaired by physical disruption of intraskeletal and/or periosteal vasculature by the fracture. Thus, pharmacological interventions are needed to improve osseous blood flow, thereby accelerating bone fracture closure.
View Article and Find Full Text PDFClinically, erythropoietin (EPO) is known to increase systemic vascular resistance and arterial blood pressure. However, EPO stimulates the production of the potent vasodilator, nitric oxide (NO), in culture endothelial cells. The mechanism by which EPO causes vasoconstriction despite stimulating NO production may be dependent on its ability to activate two receptor complexes, the homodimeric EPO (EPOR ) and the heterodimeric EPOR/β-common receptor (βCR).
View Article and Find Full Text PDFIn short-term animal models of ischemia, erythropoietin (EPO) signaling through the heterodimeric EPO receptor (EPOR)/β-common receptor (βCR) is believed to elicit tissue protective effects. However, large, randomized, controlled trials demonstrate that targeting a higher hemoglobin level by administering higher doses of EPO, which are more likely to activate the heterodimeric EPOR/βCR, is associated with an increase in adverse cardiovascular events. Thus, inhibition of long-term activation of the βCR may have therapeutic implications.
View Article and Find Full Text PDFThe brain and muscle aryl hydrocarbon receptor nuclear translocator-like protein (BMAL)-1 constitutes a major transcriptional regulator of the circadian clock. Here, we explored the impact of conditional deletion of Bmal1 in endothelium and hematopoietic cells in murine models of microvascular and macrovascular injury. We used two models of Bmal1;Tek-Cre mice, a retinal ischemia/reperfusion model and a neointimal hyperplasia model of the femoral artery.
View Article and Find Full Text PDFArterioscler Thromb Vasc Biol
February 2016
Objective: Patients with systemic lupus erythematosis are at risk for premature atherosclerosis and half of the patients with systemic lupus erythematosis have elevated type I interferon (IFN-I) levels. We hypothesized that IFN-I would induce premature atherosclerosis by increasing the number of smooth muscle progenitor cells (SMPC) in the bloodstream and promoting atherosclerotic lesions within the vasculature.
Approach And Results: SMPC isolated from wild-type and IFN receptor knockout animals were cultured in medium±IFN-I.
The ovarian peptide hormone, relaxin, circulates during pregnancy, contributing to profound maternal vasodilation through endothelial and nitric oxide (NO)-dependent mechanisms. Circulating numbers of bone marrow-derived endothelial cells (BMDECs), which facilitate angiogenesis and contribute to repair of vascular endothelium, increase during pregnancy. Thus, we hypothesized that relaxin enhances BMDEC NO production, circulating numbers, and function.
View Article and Find Full Text PDFVascular endothelial growth factor (VEGF) and erythropoietin (EPO) have profound effects on the endothelium and endothelial progenitor cells (EPCs), which originate from the bone marrow and differentiate into endothelial cells. Both EPO and VEGF have demonstrated an ability to increase the number and performance properties of EPCs. EPC behavior is highly dependent on nitric oxide (NO), and both VEGF and EPO can stimulate intracellular NO.
View Article and Find Full Text PDFIntimal hyperplasia is one of the major pathological processes in vein graft failure with diabetes mellitus. In this study, we tested the hypothesis that the suppressive effect of aminoguanidine on intimal hyperplasia is mediated by downregulated expression of advanced glycation end products (AGE) and its receptor (RAGE) in streptozotocin-induced diabetes. To induce intimal hyperplasia, autologous external jugular vein was grafted into the infrarenal abdominal aorta in 52 male Sprague-Dawley rats.
View Article and Find Full Text PDFIntimal hyperplasia of autologous vein grafts is a critical problem affecting the long-term patency of many types of vascular reconstruction. Within intimal hyperplasia lesions, smooth muscle cells are a major component, playing an essential role in the pathological process. Given that bone marrow-derived cells may differentiate into smooth muscle cells in the neointima of injured arteries, we hypothesized that the bone marrow may serve as a source for some of the smooth muscle cells within intimal hyperplasia lesions of vein grafts.
View Article and Find Full Text PDFBackground: To investigate the molecular mechanism of autologous venous graft intimal hyperplasia, a mouse model is needed. Currently only vein to carotid artery mouse models are available and are hampered by a high thrombosis rate. We hypothesized that operating on the aorta would lead to intimal hyperplasia with decreased risk of thrombosis.
View Article and Find Full Text PDF