Publications by authors named "Yanpei Zhuang"

Microalgae are the main source of the omega-3 fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), essential for the healthy development of most marine and terrestrial fauna including humans. Inverse correlations of algal EPA and DHA proportions (% of total fatty acids) with temperature have led to suggestions of a warming-induced decline in the global production of these biomolecules and an enhanced importance of high latitude organisms for their provision. The cold Arctic Ocean is a potential hotspot of EPA and DHA production, but consequences of global warming are unknown.

View Article and Find Full Text PDF

Atlantification, known as impacts of high-latitude Atlantic water inflows on the Arctic Ocean has strengthened owing to climate change, corresponding to the rapid ice retreat in the Arctic. The relationship between phytoplankton and environmental changes in the Arctic on the interannual scale is unclear because of the lack of long-time series data. In this study, we discuss the ecological response to Atlantic water intrusion in the Kongsfjorden,Svalbard.

View Article and Find Full Text PDF

Spatial variability of ammonium concentrations along repeat transects were examined on the Chukchi shelf during 2012-2018. Two distinct near-bottom high ammonium pools (>1 μmol/kg) near 67.5°N and 72.

View Article and Find Full Text PDF

The carbonate chemistry of sea ice plays a critical role in global ocean carbon cycles, particularly in polar regions which are subject to significant climate change-induced sea ice variation. However, less is known about the interaction of carbonate system between sea ice and its adjacent seawaters due to sparse sampling and disparities in reported results. Here we provide an insight into this issue by collecting and measuring dissolved inorganic carbon (DIC) and associated environmental parameters in Arctic sea ice during a cruise in the summer of 2014.

View Article and Find Full Text PDF
Article Synopsis
  • The Chukchi Sea is becoming a significant carbon dioxide (CO2) sink due to rapid climate changes, highlighting the need to understand seasonal variations in air-sea CO exchange and biogeochemical processes.
  • Data from five cruises in 2014 revealed that the combination of Bering summer water and meltwater has a much higher capacity for atmospheric CO2 uptake compared to Alaskan Coastal Water due to stronger biological CO removal.
  • A variable phytoplankton stoichiometry led to higher dissolved inorganic carbon-based net community production (NCP) than nitrate-based NCP, indicating that during peak growth season, a notable portion of CO2 uptake relies on flexible phytoplankton nutrient ratios, which is crucial for predicting future responses
View Article and Find Full Text PDF

The Arctic Ocean has experienced rapid warming and sea ice loss in recent decades, becoming the first open-ocean basin to experience widespread aragonite undersaturation [saturation state of aragonite (Ω) < 1]. However, its trend toward long-term ocean acidification and the underlying mechanisms remain undocumented. Here, we report rapid acidification there, with rates three to four times higher than in other ocean basins, and attribute it to changing sea ice coverage on a decadal time scale.

View Article and Find Full Text PDF

Nitrogen nutrient surplus is the main cause of a series of environmental problems in the Yangtze Estuary and its adjacent East China Sea (ECS). Denitrification plays an important role in controlling nitrate dynamics and fate in estuarine and coastal environments. We investigated the natural and potential rates of denitrification in the sediments of the Yangtze Estuary and ECS via slurry incubation experiments combined with acetylene inhibition techniques to reveal its contributions to total nitrogen reduction in this hypereutrophic continental shelf area.

View Article and Find Full Text PDF