Publications by authors named "Yannie Chan"

Micelles of a model amphiphilic block copolymer, poly(hydroxyethyl acrylate)-block-poly(n-butyl acrylate) (PHEA-b-PBA), synthesized via the RAFT polymerization were cross-linked by copolymerization of a degradable cross-linker from the living RAFT-end groups of PBA chains, yielding a cross-linked core without affecting significantly the original micelle size. The cross-linker incorporation into the micelles was evidenced via physicochemical analysis of the copolymer unimers formed upon acidic cleavage of the cross-linked micelles. High doxorubicin loading capacities (60 wt %) were obtained.

View Article and Find Full Text PDF

New divinyl-functionalized acetal-based crosslinkers were synthesized as building elements to form acid-labile microgel particles for controlled-release applications. The synthesized crosslinkers underwent hydrolysis at slightly acidic pHs in less than 1 h while they were stable at neutral pHs for longer times. HEMA was copolymerized with the crosslinkers via an inverse emulsion polymerization technique using a redox initiator system at room temperature to form crosslinked, colloidal p(HEMA) microgels.

View Article and Find Full Text PDF

Here we describe the combined use of acid-labile microgel approach and RAFT-mediated seeded dispersion polymerization technique to prepare an acid-cleavable core-shell like polymeric colloidal system for the delivery of hydrophobic drugs at slightly acidic sites. A new bisacrylate acetal crosslinker was copolymerized with n-butyl acrylate (BA) in the presence of a RAFT agent using a dispersion polymerization technique, which yielded crosslinked spherical particles with the size ranging between 150 and 500 nm. The particles were cleaved in a pH-dependent manner similar to the acid-labile hydrolysis behaviour of the crosslinker.

View Article and Find Full Text PDF