Visual working memory (VWM) allows us to actively store, update, and manipulate visual information surrounding us. While the underlying neural mechanisms of VWM remain unclear, contralateral delay activity (CDA), a sustained negativity over the hemisphere contralateral to the positions of visual items to be remembered, is often used to study VWM. To investigate if the CDA is a robust neural correlate for VWM tasks, we reproduced eight CDA-related studies with a publicly accessible EEG data set.
View Article and Find Full Text PDFContext: Electroencephalography (EEG) is a complex signal and can require several years of training, as well as advanced signal processing and feature extraction methodologies to be correctly interpreted. Recently, deep learning (DL) has shown great promise in helping make sense of EEG signals due to its capacity to learn good feature representations from raw data. Whether DL truly presents advantages as compared to more traditional EEG processing approaches, however, remains an open question.
View Article and Find Full Text PDF