Increasing demands for protein-based therapeutics such as monoclonal antibodies, fusion proteins, bispecific molecules, and antibody fragments require researchers to constantly find innovative solutions. To increase yields and decrease costs of next generation bioprocesses, highly concentrated cell culture media formulations are developed but often limited by the low solubility of amino acids such as tyrosine, cystine, leucine, and isoleucine, in particular at physiological pH. This study sought to investigate highly soluble and bioavailable derivatives of leucine and isoleucine that are applicable for fed-batch processes.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
September 2018
Radical cascade processes are invaluable for their ability to rapidly construct complex chiral molecules from simple substrates. However, implementing catalytic asymmetric variants is difficult. Reported herein is a visible-light-mediated organocatalytic strategy that exploits the excited-state reactivity of chiral iminium ions to trigger radical cascade reactions with high enantioselectivity.
View Article and Find Full Text PDFChiral iminium ions-generated upon condensation of α,β-unsaturated aldehydes and amine catalysts-are used extensively by chemists to make chiral molecules in enantioenriched form. In contrast, their potential to absorb light and promote stereocontrolled photochemical processes remains unexplored. This is despite the fact that visible-light absorption by iminium ions is a naturally occurring event that triggers the mechanism of vision in higher organisms.
View Article and Find Full Text PDFFluorination often confers a range of advantages in modulating the conformation and reactivity of small molecule organocatalysts. By strategically introducing fluorine substituents, as part of a β-fluoroamine motif, in a triazolium pre-catalyst, it was possible to modulate the behaviour of the corresponding N-heterocyclic carbene (NHC) with minimal steric alterations to the catalyst core. In this study, the effect of hydrogen to fluorine substitution was evaluated as part of a molecular editing study.
View Article and Find Full Text PDF