Introduction: One of the main concerns for all fetal surgeries is the risk of preterm delivery due to the preterm prelabor rupture of the fetal membranes (iPPROM). Clinical approaches to seal fetal membrane (FM) defects are missing due to the lack of appropriate strategies to apply sealing biomaterials at the defect site.
Methods: Here, we test the performance of a previously developed strategy to seal FM defects with cyanoacrylate-based sealing patches in an ovine model up to 24 days after application.
Introduction: The benefits of fetal surgery are impaired by the high incidence of iatrogenic preterm prelabor rupture of the fetal membranes (iPPROM), for which chorioamniotic separation has been suggested as a potential initiator. Despite the urgent need to prevent iPPROM by sealing the fetoscopic puncture site after intervention, no approach has been clinically translated.
Methods: A mussel-inspired biomimetic glue was tested in an ovine fetal membrane (FM) defect model.
Introduction: Iatrogenic preterm premature rupture of the membrane remains the Achille's heel of fetoscopy. The aim of this study was to show in vivo feasibility of fetal membrane (FM) defect sealing by the application of tissue glues with umbrella-shaped receptors.
Methods: First, we adapted our previously described ex vivo strategy and evaluated the adhesion strength of different tissue glues, Histoacryl® and Glubran2®, by bonding polytetrafluoroethylene or silicone encapsulated nitinol glue receptor to human FM.
Cells modulate the functional properties of their environment by depositing extracellular matrix (ECM) proteins during biological processes in vivo and in vitro. Despite the ECMs central role in tissue formation, its quantification in hydrogels like Matrigel, which have a complex materials-inherent biopolymer composition is exceptionally challenging. Here, the use of protein-free, synthetic poly(ethylene glycol) hydrogels enables the analysis of deposited human bone marrow mesenchymal stromal cells ECM directly harvested from fresh 3D cell cultures by a tandem mass spectrometry (LC-MS/MS) method.
View Article and Find Full Text PDFIntroduction: The benefits of endoscopic fetal surgery are deteriorated by the high risk of iatrogenic preterm prelabor rupture of fetal membranes (iPPROM). While previous studies have reported good sealing candidates to prevent membrane rupture, the delivery of these materials to the location of membrane puncture remains unsolved.
Materials And Methods: We describe an approach to apply sealing materials onto the amnion through the fetoscopy port.