Publications by authors named "Yannick Poitelon"

During peripheral nervous system development, Schwann cells undergo Rac1-dependent cytoskeletal reorganization as they insert cytoplasmic extensions into axon bundles to radially sort, ensheath, and myelinate individual axons. However, our understanding of the direct effectors targeted by Rac1 is limited. Here, we demonstrate that striatin-3 and MOB4 are novel Rac1 interactors.

View Article and Find Full Text PDF

Schwann cells are critical for the proper development and function of the peripheral nervous system (PNS), where they form a collaborative relationship with axons. Past studies highlighted that a pair of proteins called the prohibitins play major roles in Schwann cell biology. Prohibitins are ubiquitously expressed and versatile proteins.

View Article and Find Full Text PDF

Rapid nerve conduction in the peripheral nervous system (PNS) is facilitated by the multilamellar myelin sheath encasing many axons of peripheral nerves. Charcot-Marie-Tooth type 1A (CMT1A), and hereditary neuropathy with liability to pressure palsy (HNPP) are common demyelinating inherited peripheral neuropathies and are caused by mutations in the peripheral myelin protein 22 (PMP22) gene. Duplication of PMP22 leads to its overexpression and causes CMT1A, while its deletion results in PMP22 under expression and causes HNPP.

View Article and Find Full Text PDF

Schwann cells are critical for the proper development and function of the peripheral nervous system, where they form a mutually beneficial relationship with axons. Past studies have highlighted that a pair of proteins called the prohibitins play major roles in Schwann cell biology. Prohibitins are ubiquitously expressed and versatile proteins.

View Article and Find Full Text PDF

It is well established that axonal Neuregulin 1 type 3 (NRG1t3) regulates developmental myelin formation as well as EGR2-dependent gene activation and lipid synthesis. However, in peripheral neuropathy disease context, elevated axonal NRG1t3 improves remyelination and myelin sheath thickness without increasing Egr2 expression or activity, and without affecting the transcriptional activity of canonical myelination genes. Surprisingly, Pmp2, encoding for a myelin fatty acid binding protein, is the only gene whose expression increases in Schwann cells following overexpression of axonal NRG1t3.

View Article and Find Full Text PDF
Article Synopsis
  • Myelinating cells, like Schwann cells and oligodendrocytes, react to mechanical signals from their environment, which is important for their functions in nerve repair and maintenance.
  • Removing YAP and TAZ, proteins that help these cells respond to mechanical cues, disrupts their ability to recognize axons and effectively form or repair myelin in the peripheral nervous system.
  • In the central nervous system, specifically in oligodendrocytes, YAP and TAZ are crucial for the early stages of myelin repair after damage, as they enhance the ability of these cells to proliferate and remyelinate axons.
View Article and Find Full Text PDF

Background: Damage to the cerebral vasculature can lead to vascular contributions to cognitive impairment and dementia (VCID). A reduction in blood flow to the brain leads to neuropathology, including neuroinflammation and white matter lesions that are a hallmark of VCID. Mid-life metabolic disease (obesity, prediabetes, or diabetes) is a risk factor for VCID which may be sex-dependent (female bias).

View Article and Find Full Text PDF

Charcot-Marie-Tooth (CMT) disease is one of the most common inherited neurological disorders, affecting either axons from the motor and/or sensory neurons or Schwann cells of the peripheral nervous system (PNS) and caused by more than 100 genes. We previously identified mutations in FGD4 as responsible for CMT4H, an autosomal recessive demyelinating form of CMT disease. FGD4 encodes FRABIN, a GDP/GTP nucleotide exchange factor, particularly for the small GTPase Cdc42.

View Article and Find Full Text PDF

Peripheral nerves and Schwann cells have to sustain constant mechanical constraints, caused by developmental growth as well as stretches associated with movements of the limbs and mechanical compressions from daily activities. In Schwann cells, signaling molecules sensitive to stiffness or stretch of the extracellular matrix, such as YAP/TAZ, have been shown to be critical for Schwann cell development and peripheral nerve regeneration. YAP/TAZ have also been suggested to contribute to tumorigenesis, neuropathic pain, and inherited disorders.

View Article and Find Full Text PDF

Background: Numerous studies have indicated that myelination is the result of the interplay between extracellular signals and an intricate network of transcription factors. Yet, the identification and characterization of the full repertoire of transcription factors that modulate myelination are still incomplete. CC2D1B is a member of the Lgd/CC2D1 family of proteins highly expressed in myelinating cells in the central and peripheral nervous systems.

View Article and Find Full Text PDF

Peripheral nerve injuries are common conditions that can arise from trauma (e.g., compression, severance) and can lead to neuropathic pain as well as motor and sensory deficits.

View Article and Find Full Text PDF

Schwann cell (SC) mitochondria are quickly emerging as an important regulator of myelin maintenance in the peripheral nervous system (PNS). However, the mechanisms underlying demyelination in the context of mitochondrial dysfunction in the PNS are incompletely understood. We recently showed that conditional ablation of the mitochondrial protein Prohibitin 1 (PHB1) in SCs causes a severe and fast progressing demyelinating peripheral neuropathy in mice, but the mechanism that causes failure of myelin maintenance remained unknown.

View Article and Find Full Text PDF

In peripheral nerves, Schwann cells form myelin and provide trophic support to axons. We previously showed that the mitochondrial protein prohibitin 2 can localize to the axon-Schwann-cell interface and is required for developmental myelination. Whether the homologous protein prohibitin 1 has a similar role, and whether prohibitins also play important roles in Schwann cell mitochondria is unknown.

View Article and Find Full Text PDF

Objective: To date, muscular and bone pain have been studied in domestic swine models, but the only neuropathic pain model described in swine is a mixed neuritis model. Common peroneal nerve injury (CPNI) neuropathic pain models have been utilized in both mice and rats.

Methods: The authors developed a swine surgical CPNI model of neuropathic pain.

View Article and Find Full Text PDF

Excessive activation of mTOR in microglia impairs CNS homeostasis and causes severe epilepsy. Autophagy constitutes an important part of mTOR signaling. The contribution of microglial autophagy to CNS homeostasis and epilepsy remains to be determined.

View Article and Find Full Text PDF

Initially identified in Drosophila, the Hippo signaling pathway regulates how cells respond to their environment by controlling proliferation, migration and differentiation. Many recent studies have focused on characterizing Hippo pathway function and regulation in mammalian cells. Here, we present a brief overview of the major components of the Hippo pathway, as well as their regulation and function.

View Article and Find Full Text PDF

YAP and TAZ are effectors of the Hippo pathway that controls multicellular development by integrating chemical and mechanical signals. Peripheral nervous system development depends on the Hippo pathway. We previously showed that loss of YAP and TAZ impairs the development of peripheral nerve as well as Schwann cell myelination.

View Article and Find Full Text PDF

Background: Hypothalamic dysfunction occurs early in the clinical course of Alzheimer's disease (AD), likely contributing to disturbances in feeding behavior and metabolic function that are often observed years prior to the onset of cognitive symptoms. Late-life weight loss and low BMI are associated with increased risk of dementia and faster progression of disease. However, high-fat diet and metabolic disease (e.

View Article and Find Full Text PDF

In the developing peripheral nervous system, Schwann cells (SCs) extend their processes to contact, sort, and myelinate axons. The mechanisms that contribute to the interaction between SCs and axons are just beginning to be elucidated. Using a SC-neuron coculture system, we demonstrate that Arg-Gly-Asp (RGD) peptides that inhibit α -containing integrins delay the extension of SCs elongating on axons.

View Article and Find Full Text PDF

Myelin is critical for the proper function of the nervous system and one of the most complex cell-cell interactions of the body. Myelination allows for the rapid conduction of action potentials along axonal fibers and provides physical and trophic support to neurons. Myelin contains a high content of lipids, and the formation of the myelin sheath requires high levels of fatty acid and lipid synthesis, together with uptake of extracellular fatty acids.

View Article and Find Full Text PDF

Myrf is a membrane-bound transcription factor that plays a key role in various biological processes. The Intramolecular Chaperone Auto-processing (ICA) domain of Myrf forms a homo-trimer, which carries out the auto-cleavage of Myrf. The ICA homo-trimer-mediated auto-cleavage of Myrf is a prerequisite for its transcription factor function in the nucleus.

View Article and Find Full Text PDF

Schwann cells (SCs) are exquisitely sensitive to the elasticity of their environment and their differentiation and capacity to myelinate depend on the transduction of mechanical stimuli by YAP and TAZ. YAP/TAZ, in concert with other transcription factors, regulate several pathways including lipid and sterol biosynthesis as well as extracellular matrix receptor expressions such as integrins and G-proteins. Yet, the characterization of the signaling downstream YAP/TAZ in SCs is incomplete.

View Article and Find Full Text PDF