Publications by authors named "Yannick Pereira"

Alzheimer disease (AD) represents a major medical problem where mono-therapeutic interventions demonstrated only a limited efficacy so far. We explored the possibility of developing a combinational therapy that might prevent the degradation of neuronal and endothelial structures in this disease. We argued that the distorted balance between excitatory (glutamate) and inhibitory (GABA/glycine) systems constitutes a therapeutic target for such intervention.

View Article and Find Full Text PDF

Charcot-Marie-Tooth disease type 1A (CMT1A) is the most common inherited sensory and motor peripheral neuropathy. It is caused by PMP22 overexpression which leads to defects of peripheral myelination, loss of long axons, and progressive impairment then disability. There is no treatment available despite observations that monotherapeutic interventions slow progression in rodent models.

View Article and Find Full Text PDF

Chromate is a widespread pollutant as a waste of human activities. However, the mechanisms underlying its high toxicity are not clearly understood. In this work, we used the yeast Saccharomyces cerevisiae to analyse the physiological effects of chromate exposure in a eukaryote cell model.

View Article and Find Full Text PDF

Botulism is mainly acquired by the oral route, and botulinum neurotoxin (BoNT) escapes the gastrointestinal tract by crossing the digestive epithelial barrier prior to gaining access to the nerve endings. Here, we show that biologically active BoNT/A crosses intestinal cell monolayers via a receptor-mediated transcytosis, including a transport inhibition at 4 degrees C and a passage at 37 degrees C in a saturable manner within 30-60 min. BoNT/A passage rate was about 10-fold more efficient through the intestinal crypt cell line m-IC(cl2), than through the carcinoma Caco-2 or T84 cells, and was not increased when BoNT/A was associated with the non-toxic proteins (botulinum complex).

View Article and Find Full Text PDF

Clostridial binary toxins, such as Clostridium perfringens Iota and Clostridium botulinum C2, are composed of a binding protein (Ib and C2-II, respectively) that recognizes distinct membrane receptors and mediates internalization of a catalytic protein (Ia and C2-I, respectively) with ADP-ribosyltransferase activity that depolymerizes the actin cytoskeleton. After internalization, it was found that C2 and Iota toxins were not routed to the Golgi apparatus and exhibited differential sensitivity to inhibitors of endosome acidification. While the C2-I component of C2 toxin was translocated into the cytosol from early endosomes, translocation of the Ia component of Iota toxin occurred between early and late endosomes, was dependent on more acidic conditions, and uniquely required a membrane potential gradient.

View Article and Find Full Text PDF

Metabolomics is considered as an emerging new tool for functional proteomics in the identification of new protein function or in projects aiming at modeling whole cell metabolism. When combined with proteome studies, metabolite-profiling analyses revealed unanticipated insights into the yeast sulfur pathway. In response to cadmium, the observed overproduction of glutathione, essential for the detoxification of the metal, can be entirely accounted for by a marked drop in sulfur-containing protein synthesis and a redirection of sulfur metabolite fluxes to the glutathione pathway.

View Article and Find Full Text PDF

YfkN isolated from the culture supernatant of Bacillus subtilis in the exponential phase of growth is a protein of 143.5 kDa that derives from a putative large precursor of 159.6 kDa processed at both the N- and C-terminal ends.

View Article and Find Full Text PDF

We characterized the reversible folding-unfolding transition of Bacillus subtilis exocellular chitosanase from either thermal or urea denaturation of the protein. The transitions were monitored in each case by intrinsic fluorescence changes and resistance to proteolysis. Unfolding and refolding kinetics and differential scanning calorimetry analysis suggested a two-state equilibrium.

View Article and Find Full Text PDF

When Bacillus subtilis levanase (SacC), alpha-amylase (AmyE) and chitosanase (Csn) structural genes were expressed under the regulated control of sacR, the inducible levansucrase (SacB) leader region in a degU32(Hy) mutant, it was observed that the production yields of the various extracellular proteins were quite different. This is mainly due to differences in the stabilities of their corresponding mRNAs which lead to discrepancies between the steady-state level of mRNA of sacB and csn on the one hand and amyE and sacC on the other. In contrast to levansucrase mRNA, the decay curves of alpha-amylase and levanase mRNAs obtained by Northern blotting analysis did not match the decay curves of their functional mRNA.

View Article and Find Full Text PDF