Publications by authors named "Yannick Ouedraogo"

The 7-nitroindolinyl family of caging chromophores has received much attention in the past two decades. However, its uncaging mechanism is still not clearly understood. In this study, we performed state-of-the-art density functional theory calculations to unravel the photo-uncaging mechanism in its entirety, and we compared the probabilities of all plausible pathways.

View Article and Find Full Text PDF

Glutamate is an excitatory neurotransmitter that controls numerous pathways in the brain. Neuroscientists make use of photoremovable protecting groups, also known as cages, to release glutamate with precise spatial and temporal control. Various cage designs have been developed and among the most effective has been the nitroindolinyl caging of glutamate.

View Article and Find Full Text PDF

5-Oxo-6,8,11,14-eicosatetraenoic acid (5-oxo-ETE) is formed by the oxidation of 5-hydroxy-6E,8Z,11Z,14Z-eicosatetraenoic acid (5-HETE), which is a major metabolite of enzymatic oxidation of arachidonic acid (AA). 5-Oxo-ETE is the most potent lipid chemoattractant for human eosinophils. Its actions are mediated by the selective OXE receptor, which is therefore an attractive target in eosinophilic diseases such as allergic rhinitis and asthma.

View Article and Find Full Text PDF

5-Oxo-ETE is the most potent eosinophil chemoattractant among lipid mediators. We have developed two 5-oxo-ETE receptor antagonists. In the course of the work, we have developed a procedure to selectively introduce a cis and trans double bond in an alkyl side chain.

View Article and Find Full Text PDF

A two-step stereoselective preparation of a goldfish pheromone, 17α,20β-dihydroxy-4-pregnen-3-one, is reported from the readily available cortexolone in 64% overall yield. The (20S)-epimer was also synthesized in three steps from cortexolone with an overall yield of 47%. A microscale chiroptical technique based on a host/guest complexation mechanism between the substrate and a dimeric metalloporphyrin host (tweezer) was used to confirm the stereochemical assignment, while Density Functional Theory (DFT) calculations were employed to explain the high stereoselectivity induced by the 17α-hydroxyl and C18-methyl groups.

View Article and Find Full Text PDF

5-Oxo-ETE is the most powerful eosinophil chemoattractant among lipid mediators. Eosinophil infiltration into the lungs of asthmatics may be responsible for the late phase of inflammatory asthma. We have designed and synthesized a 5-oxo-ETE receptor antagonist, the purpose of which is to prevent eosinophil migration to the lung during an asthma attack and thereby reduce asthma symptoms.

View Article and Find Full Text PDF